

Super Fine Pitch Cutter for Aluminum Machining

MD90

Super Fine Pitch Cutter for Aluminum Machining

NEW

High efficiency and premium quality aluminum machining

Improved machining efficiency with fine pitch cutter **Excellent machining quality with unique PCD inserts** Lightweight design compatible with BT30 Custom-designed options also available

Super Fine Pitch Cutter for Aluminum Machining

MD90

Improved machining efficiency of aluminum parts with super fine pitch specifications Unique design provides high quality and high precision results with long tool life

High quality

Surface finish of 0.8 µmRa or less. Stable machining

Vc = 2,500 m/min (n = 8,000 min⁻¹), ap x ae = 0.2 x 75 mm, fz = 0.08 mm/t (Vf = 12,800 mm/min) Wet ADC12 BT50 Ø100 (20 inserts) (Internal evaluation)

8

Engineered to perfection

A new generation of super fine pitch cutters combine multiple aspects of Kyocera's leading milling technology

Machine aluminum with higher speeds and higher quality with PCD inserts

High efficiency

Capable of Vf ≥ 24,000 mm/min

High-efficiency machining achieved with an ultra-fine pitch design Custom designed options allow for further efficiency improvements

Machining efficiency comparison (Internal evaluation)

MD90
18 inserts (Custom Designs)Vf = 26,800mm/minEfficiency
1.2x

Competitor A 14 inserts

 $Vc = 2,500 \text{ m/min} (n = 10,000 \text{ min}^{-1})$, ap x ae = 0.2 x 53 mm, fz = 0.15 mm/t Wet ADC12 BT30 Ø80

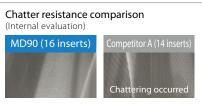
Lightweight

Compatible with BT30

Offering lightweight aluminum body sizes from ø80 mm Largest cutter dia. of ø125 mm weighs less than 1.5 kg

Unique design provides high efficiency and high quality machining results

High efficiency The shape of the cutter maintains super fine pitch specifications



1

Curved contact surface

Maximized pitch maintains multiple inserts and rigidity

Reduces chattering by dispersing stress

Vc = 3,000 m/min, ap x ae = 0.2 x 70 mm fz = 0.07 mm/t Wet ADC12 ø80 (Prototype)

Scatter prevention Firm insert hold

Ultra fine pitch with lightweight design

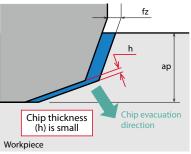
Largest cutter dia. of ø125 mm weighs less than 1.5kg. Compatible with BT30

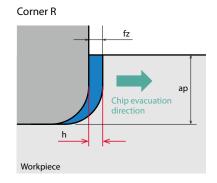
Cutting Dia.	No. of Inserts	Weight (kg)	Body		
ø40	6	0.26	Steel		
ø50	10	0.37			
ø63	14	0.62			
ø80	16	0.6			
ø100	20	0.96	Aluminum		
ø125	24	1.48			

Metric Bore Dia.

High quality High machined surface quality, high precision and long tool life

Suppresses burr formation


Double-edge (Standard type)

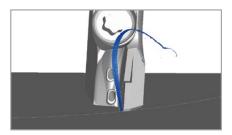

Controlls the chip evacuation direction and suppresses distortion caused by chip separation

Double-edge

Achieves stable machining

- Double coolant holes

Effective cooling of cutting edge and workpiece to achieve superior surface finishes


Suppresses chip biting and insert defects

Streamlined chip pocket

Good chip control protects cutter body Stable cutter balance delivers highprecision machining and longer tool life

Chip evacuation simulation

Evacuate chips along the pocket

Performance

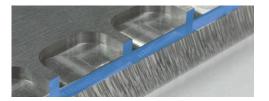
Achieve high-efficiency and high-quality machining with ultra-fine pitch specifications

Machining efficiency comparison (Internal evaluation)

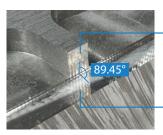
MD90
(16 inserts)Vf = 9,500mm/minCompetitor A
(14 inserts)Vf = 8,300mm/min

Since the MD90 has a high number of cutting edges, table feed (Vf) can be improved. Efficiency can be improved while maintaining the same machining quality as competitor.
$$\label{eq:response} \begin{split} n &= 9,900 \; \text{min}^{-1} \; (\text{Vc} = 2,500 \; \text{m/min}) \\ \text{Vf} &= 9,500 \; \text{mm/min} \; (\text{fz} = 0.06 \; \text{mm/t}) \\ \text{ap x ae} &= 0.3 \times 50 \; \text{mm} \\ \text{ADC12 \; Wet } \textit{\&80} \\ \text{MD90-080RA-T16CSF} \\ \text{LNGX1807PDFR-G (KPD01A)} \\ (\text{Internal evaluation}) \end{split}$$

Surface finish evaluation


Excellent surface finish 0.19 µmRa

ni *-{	R 82 .×1,000	
	And the second second	-
*		1


Performance

 $n = 16,000 \text{ min}^{-1} (Vc = 2,000 \text{ m/min})$ Vf = 9,500 mm/min (fz = 0.1 mm/t) ap x ae = 5 x 5 mm ADC12 Wet ø40 (6 inserts) MD90-040RS-T6CMSF LNGX180704PDFR-RR (KPD01A) (Internal evaluation)

Surface finish evaluation

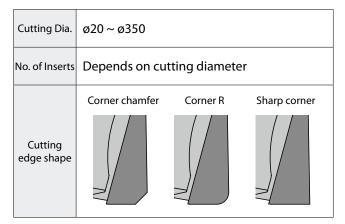
Wall surface : 0.32µmRa

1	and the second	and the	
1			
1			

Bottom : 0.18µmRa

					### 1x4.000	4.62	×10.0
1						+	
1							
100	and the state of t	the state of the s	- Aleren	the second	and the state	-	the state
1							
1						+	
-							
		·		- 18		10	(mail

Achieves stable machining even with a long overhang

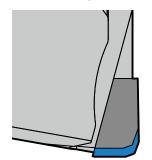

Custom Designs

For various machining applications

We can make your custom design needs a reality across a variety of applications.

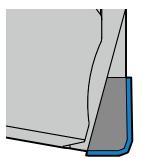
Please contact our sales representatives for details.

Examples


Regrinding

Standard amount of regrinding

Front face only : 0.1 mm (up to 5 times) Entire circumference : 0.1 mm (up to 3 times)


The above is for reference only. Please contact our sales representatives for details.

Front face only

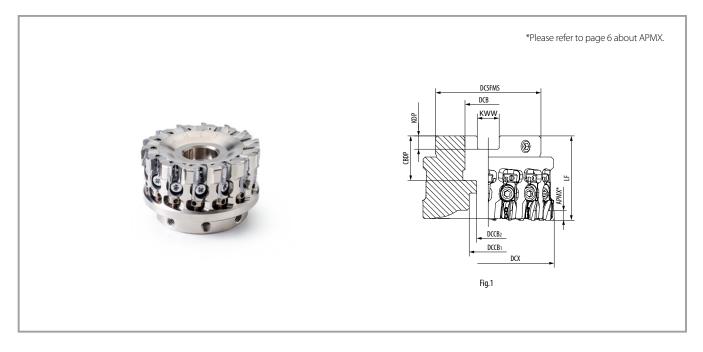
Regrinding part

Entire circumference

Regrinding part

Insert

	Shape		Description	Dim	ension (PCD
	Junipe			L	RE	LE (APMX)	KPD01A
	Arc- Double- edge General purpose		LNGX1807PDFR-G		_	4	•
Standard	Straight Double- edge Low cutting force	RE LE (APMA)	LNGX1807PDFR-L	18.1		T	•
-2)	Straight		LNGX180704PDFR-RR		0.4	8	•
Long edge	Corner R(RE)		LNGX180708PDFR-RR		0.8		•


The dimension indicated for LE (APMX) is brand new. Please note that it may change after regrinding.

• : Available

Туре	Shape	Features and applications
G	Double-edge	1st recommendation Suppresses burrs and ensures high-quality surface finish Achieves longer tool life and stable machining
L	Double-edge	Low cutting force with straight wiper edge Provides suitable results even with lower rigidity workpieces or clamping power
RR	Long edge Corner R Straight	Corner Radius (R) Suitable for machining with larger D.O.C and heavy loads

Polycrystalline Diamond Average particle size : 1 µm

KPD01A Achieves both wear resistance and chipping resistance required for machining with ultra-fine pitch tools Stable, high-efficiency machining is possible

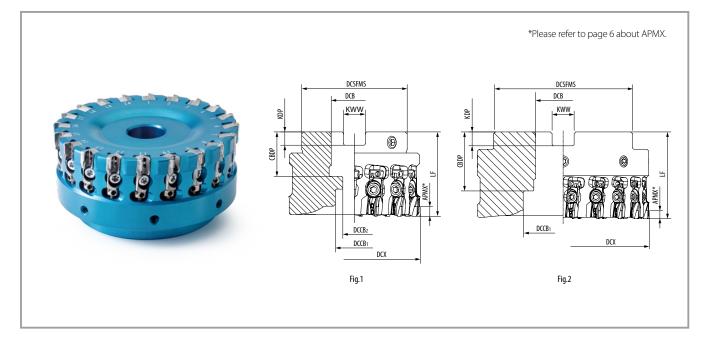
Toolholder Dimensions

	D	escription	Stock	Inserts				Dime	nsion (m	ım)				Rake angle	Coolant	Shape	Weight (kg)	t Max. Revolution (min ⁻¹)	Arbor bolt (Attachment)
			55	No. of	DCX	DCSFMS	DCB	DCCB1	DCCB ₂	LF	CBDP	KDP	KWW	A.R.	hole				
Dia.	MD90-	040RS-T6CMSF	•	6	40	38.5	16	13.5	9		19	5.6	8.4				0.26		HH8X25H
Bore		050RS-T10CMSF	•	10	50	48.5	22	10	11	40	21	()	10.4	+5°	Yes	Fig.1	0.37	25,000	
Metric		063RS-T14CMSF	•	14	63	50	22	18			21	6.3	10.4				0.62		HH10X30H

Maximum number of revolutions

Set the number of revolutions per minute within the recommended cutting speed specified by the workpiece.

Do not use the cutter at the maximum revolution or higher since the centrifugal force may cause inserts and parts to scatter even under no load.


Recommended cutting conditions

Workpiece	Property	Cutting speed Vc (m/min)	Feed fz (mm/t)	Recommended grade
Aluminum allau	Si ratio 12.5% or below	1,000 - 2,000 - 3,000	0.05 - 0.10 - 0.20	KPD01A
Aluminum alloy	Si ratio 12.5% or above	400 - 600 - 800	0.05 - 0.10 - 0.20	KYDUIA

Please adjust cutting speed and feed rate according to actual machining conditions taking into account machine and workpiece rigidity

• : Available

Do not use the cutter at speeds exceeding the maximum cutting speed limit

Toolholder Dimensions

	Description Bescription							Dime	nsion (m	ım)				Rake angle	Coolant hole Shape	Shape	Weight	Max. Revolution	Arbor bolt
		•	52	No. ot	DCX	DCSFMS	DCB	DCCB1	DCCB ₂	LF	CBDP	KDP	KWW	A.R.	noie	•	(kg)	(min-1)	(Attachment)
	MD90-	080RA-T16CMSF	•	16	80	60	27	20	13		24	7	12.4			Fig.1 -	0.6	20,000	HH12X35H
Dia.		100RA-T20C27MSF	•	20	100		27	20	50	24	,	12.4			i ig. i	0.96	18,000 -	111273311	
Metric Bore Dia.		100RA-T20CMSF	•	20	100	80	32	45	-		30	8	14.4	+5° Yes	Fig.2	0.88	10,000	HF16X40HA	
Me		125RA-T24C27MSF	•	24	125	80	27	20	13	- 55	24	7	12.4			Fig.1	1.48	16,000 -	HH12X35H
		125RA-T24CMSF	•	27			40	55	-		33	9	16.4			Fig.2	1.31		HF20X53HA
	MD90-	080RA-T16CSF	•	16	80	60	25.4	20	13	50	27	6	6 9.5		Yes	Fig.1	0.6	20,000	HH12X35H
ia.		100RA-T20C254SF	•	20	100		23.4	20			27	U					0.97		111273311
Inch Bore Dia.		100RA-T20CSF	•	20	100	80	31.75	45	-		34	8	12.7	+5°		Fig.2	0.89		HF16X40HA
Ē		125RA-T24C254SF	•	24	125		25.4	20	13	55	27	6	9.5			Fig.1	1.49		HH12X35H
		125RA-T24CSF	•	24	125		38.1	38.1 55 - 38 10 15.9		Fig.2 1.34		16,000	HF20X53HA						

Custom sizes of ø125 and above are also available (~ø350).

Maximum number of revolutions

Set the number of revolutions per minute within the recommended cutting speed specified by the workpiece.

Do not use the cutter at the maximum revolution or higher since the centrifugal force may cause inserts and parts to scatter even under no load.

Spare parts

Clamp screw	Wrench	Adjust screw	Adjust wrench
BH4X8TR	TTW-15	AJ-3110	LW-2
Torque for inser	t clamp 3.5 N·m	-	-

• : Available

How to install inserts

- 1 Mount inserts into all pockets
- 2 Partially tighten the clamp screw (Recommended torque 1.0 N·m)
- 3 Turn the screw with the wrench to adjust and make sure that all screw heights are within 5 µm of each other (Recommended)
- 4 Fully tighten the clamp screw with tightening torque 3.5 N·m

Precautions

While in use

ACaution

Please use within recommended cutting conditions

Do not run the cutter at revolutions exceeding the printed maximum revolution limit of the cutter body

Inserts or parts may scatter due to the centrifugal force and cutting load

Confirm the total weight of the cutter and the arbor is within the machine's acceptable range

Please do not use under the following conditions:

- When cutter is not fully loaded with inserts
- If the body and/or clamp is damaged
- If a clamp or clamp screw is removed
- If inserts that have different regrind amounts are mounted

Please wear protective equipment such as protective glove when changing inserts or adjusting edge fluctuation

Injury can occur when touching the cutting edge

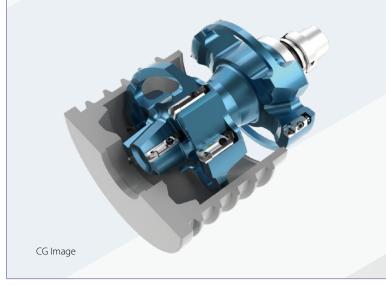
Dynamic balance

Balance adjustment on the cutter is completed before shipping

Balance adjustment has been made with special high precision inserts to be ISO balance grade (ISO1940/1) G2.5 Recommended cutting conditions at Max. revolution

Do not operate the balance adjustment screw at the outer periphery of cutter

This could lead to improper dynamic balance


Kyocera's solutions for EV parts machining

High-rigidity fine-tuning unit **K-Bore**

New adjustable cartridge design

- Simple, high-precision, fine-tuning system
- Smooth operation
- Rectangular cartridge for higher rigidity

High efficiency finishing bore cutter

Machining motor cases and motor housings with high precision and efficiency

- Multi-flute, high-efficiency design

- Weight reduction through body design optimization
- Flutes are optimized for chip flow

The information contained in this brochure is current as of April 2025. Duplication or reproduction of any part of this brochure without approval is prohibited CP496 CAT/25T2504JPS © 2025 KYOCERA Corporation