

Canal externo		G2
GBA	KGBA / KGBAS / KGBA-JCT	G13
	KGB / KGBS	G16
GBF	KGBF-F / KGBF-JCTM / KGBFS	G23
	S-KGBF	G26
(GD	KGD (Tipo integral)	G34
	KGD (Tipo integral para torno automático)	G35
	KGD-JCT (Tipo integral, porta-ferramenta com passagem para re	frig. interna) G36
	$\textbf{KGD-JCTM} \ (\textbf{Tipo integral para torno automático}, porta-ferramenta com passagem para torno automático.)$	ra refrig. interna) G39
	KGD-S (Tipo destacável 0°)	G40
KGM	KGM / KGM-T / KGMM / KGMS	G55
	KGMU	G60
KGH	KGH / KGHS	G62
KGA	KGA	G64
KGMW	KGMW	G67
TGF	Inserto TGF	G68
Canal interno		G69
-ZG	EZG	G71
/NG	VNG	G73
GC .	SIGC	G76
GE/GER	SIGE	G81
SIV	GIV / GIV-E / GIV-W	G86
IIGBA	KIGBA	G89
(GD	KGDI	G91
(GH	KIGH	G93
(GM	KIGM-8 / KIGMU-8	G95
(GIA	KGIA	G97
GMM-V	Inserto GMM-V	G98
Canal de face		G99
ZFG	EZFG	G103
/NFG	VNFG	G105
TWFG / TWFGT	TWFG	G106
	TWFGT	G108
(GDF	KGDF	G114
	KGDF-Z (Tipo integral)	G118
GVF-AA	GFVS-AA / GFVT-AA	G125
	GFV	G127
	GFVS / GFVT	G129
	GIFV	G133
(FMS	KFMS	G135
(FMS-8	KFMS-8	G138
(FTB	KFTB-S	G140
Condições de corte recomendadas		G141
condições de corte reconnendados		0141

Canal KGD (Canal externo e torneamento)

$\cdot \text{Tipo integral}$

Tipo	KGD	
Largura da aresta (mm)	2.0 ~ 8.0	
Profund. máx. do canal (mm)	6~30	
Consulte a página	G34	

· Tipo integral (Porta-ferramenta com refrig. interna)

Tipo	KGD-JCTM	
Largura da aresta (mm)	3.0 ~ 5.0	
Profund. máx. do canal (mm)	6~25	
Consulte a página	G39	

· Tipo integral para torno automático

Tipo	KGD	
Largura da aresta (mm)	2.0 ~ 4.0	
Profund. máx. do canal (mm)	10 ~ 25.5	
Consulte a página	G35	

· Tipo integral para torno automático (Porta-ferramenta com refrig. interna)

Tipo	KGD-JCTM		
Largura da aresta (mm)	2.0 ~ 4.0		
Profund. máx. do canal (mm)	12 ~ 16		
Consulte a página	G38		

· Tipo destacável

	Tipo	* KGDS-S	
Largura da aresta (mm)		3.0	
	Profund. máx. do canal (mm)	10	
	Consulte a página	G42	

^{*} O porta-ferramentas do tipo destacável pode aceitar todas as lâminas caso o sentido seja correspondente.

· Tipo destacável

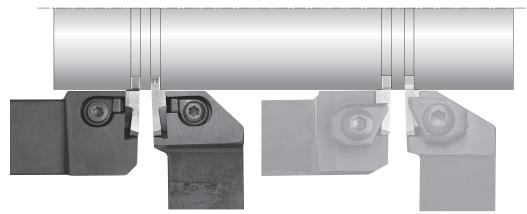
Tipo	* KGD-S	
Largura da aresta (mm)	2.0 ~ 5.0	
Profund. máx. do canal (mm)	10 ~ 25	
Consulte a página	G41	

Tipo integral

Para torno automático

Tipo destacável

^{*} O porta-ferramentas do tipo destacável pode aceitar todas as lâminas caso o sentido seja correspondente.



Externo Interno

Face

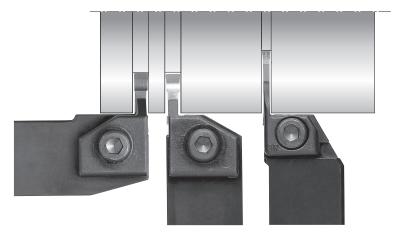
Canal raso (Profundidade de canal: ~5 mm)

Tipo	KGBAS	
Largura da aresta (mm)	0.33 ~ 4.8	
Profund. máx. do canal (mm)	0.8 ~ 5.0	
Consulte a página	G14	

KGBA (-JCT)
0.33 ~ 4.8
0.8 ~ 5.0
G13,G15

* KGBS
0.33 ~ 4.8
0.8 ~ 5.0
G17

0.33 ~ 4.8	0.33 ~ 4.8	
0.8 ~ 5.0	0.8 ~ 5.0	
G17	G16	
* Esses tipos serão trocados para o sistema à esquerda.		


* KGB

 $\begin{array}{ccc} \mathsf{KGBS} & \longrightarrow & \mathsf{KGBAS} \\ \mathsf{KGB} & \longrightarrow & \mathsf{KGBA} \end{array}$

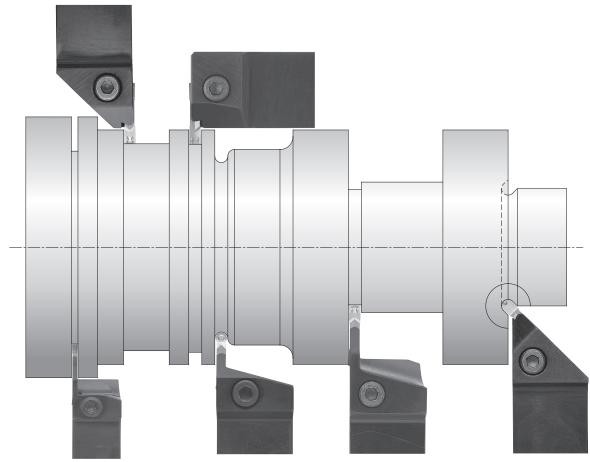
	Geral (Quadrado)	Raio completo (Redondo)	Quebra-cavaco GM	Quebra-cavaco MY
Formato da aresta				9 8

Canal profundo (Profundidade de canal : ~25 mm)

Tipo	KGHS
Largura da aresta (mm)	4.0 ~ 8.0
Profund. máx. do canal (mm)	13
Consulte a página	G63

	KGH	
	4.0 ~ 12.0	
13 ~ 17		
	G62	

KGA	
3.0 ~ 5.0	
20~25	
G64	



Canal KGM (Canal externo e torneamento)

Tipo	KGMM
Largura da aresta (mm)	3.0 ~ 5.0
Profund. máx. do canal (mm)	4.8
Consulte a página	G58

KGMS
3.0 ~ 5.0
4.8
G58

Tipo	KGM
Largura da aresta (mm)	1.5 ~ 4.0
Profund. máx. do canal (mm)	10 ~ 16
Consulte a página	G55

KGM	
3.0 ~ 8.0	
9~25	
G56	

KGM-T
2.0 ~ 6.0
17 ~ 30
G57

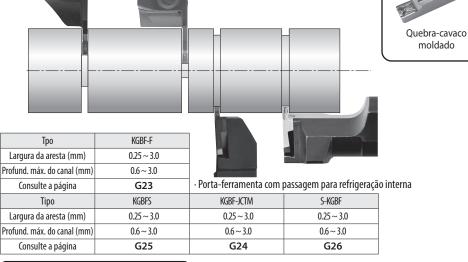
KGMU			
3.0 ~ 5.0			
3.5 ~ 4.5			
G60			

Face

Canal externo de peças de precisão para torno automático

· Porta-ferramentas com passagem para refrigeração interna

Tipo	KGD
Largura da aresta (mm)	2.0 ~ 4.0
Profund. máx. do canal (mm)	10 ~ 25.5
Consulte a página	G35


	,		,	3
Tipo		KGD-J	ICTM	
Largura da aresta (mm)		2.0	~ 4.0	
Profund. máx. do canal (mm)		12 -	~ 16	
Consulte a página		G:	38	

Tipo	KGM
Largura da aresta (mm)	1.5 ~ 4.0
Profund. máx. do canal (mm)	10 ~ 16
Consulte a página	G55

moldado

Quebra-cavaco

retificado

Para canal externo para roda de alumínio

(Externo / Faceamento / Cópia)

Tipo	KGMW
Largura da aresta (mm)	6.0 ~ 8.0
Profund. máx. do canal (mm)	25
Consulte a página	G67

Externo Interno

Face

Mary				Aço	o carbono	/ Aço ligi	a							•	(5			Р
Metal and intervolve Metal and intervolve Metal and intervolve Metal and intervolve Materials distance				- 3		, , ,							•	•	(5		П	
Descrição Desc				Fer	rro fundid	0							•		O	C	0		
Material dumos (r-40)HIX Material dumos (r-4				Me	tais não f	errosos								П		•	•	П	N
Materials dumos (~4 oH/HC) Materials dumo				Liq	as de titâ	nio										•			S
Materials Mate				_			HRC)						•	П	(0	T	П	
Descrição Desc																1			Н
BA32R 033-005							Dimens	io (mm)			Tolerând	cia (mm)		Meta	al dı	ıro			
GBA32R 033-005				restas										PV	'D	-	PVD	-	
050-005	ln:	serto	Descrição	N° de a	CW	CDX	IC	S	D1	RE			PR1215	PR1625	PR905	PR930	PV7040	TN90	● G13~G17
050-005			CD422D 022 005		0.33	0.0				0.05	0.02	. 0.03							
0.75-005 0.95 2 0.95 2 0.95 2 0.95 2 0.95 2 0.95 0.95 2 0.95 0.95 2 0.95 0.95 2 0.95 0.95 2 0.95 0.														•				•	
095-005 100-005 1 2													•	•	•	•	•	•	
100-005					l .	l				l		l .	•	•		•		•	
120-005 1.25 2 1			100-005		1	2				0.05		+ 0.025	•	•	•	•	•		
125-020 130-020 1.3 2 0.2 -0.025 +0.025 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0					1.1	l				0.05	- 0.025	+ 0.025		•	•				
130-020 140-020 1.3 2 1.4 2.5 0.2 0.025 +0.025 0 0 0 0 0.005 1.6 KGBAR16 KGBAR16 KGBAR16 KIGBAL16 150-020 1.5 2.5 0.2 0.025 +0.025 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0						l				l		1	•	•					
140-020						l						l .	•	•	•		•		
145-020						l				l	1	1							
150-020			140-020		1.4					0.2	- 0.025	+ 0.025	•	•	•		,	A	
150-020 1.5 2.5 0.2 -0.025 +0.025 0.2 -0.025 -0			145-020		1.45	2.5				0.2	- 0.025	+ 0.025	•	•	•	•			
177-020 1.75 2.5 0.2 -0.025 +0.025 0.2 0.2 -0.025 +0.025 0.2 -0.025 -0.025 -			150-020		1.5					0.2	- 0.025	+ 0.025	•	•		•			
175-020										l			•	•					
175-020 1.75 2.5 2.5 2.00-020 225-020 225-020 250-020 300-020 3 2.5 2.5 2.5 2.5 2.5 3 0.2 0.2 0.2 0.25 0.025			170-020		1.7	l				0.2	- 0.025	+ 0.025	•	•					
225-020 250-020 300-02			175-020	ļ	1.75					0.2	- 0.025	+ 0.025	•	•		•			
250-020 300-020 3 2.5 2.5 3 2.5 0.25 0.25 0.25 0.25 0.25 0.25 0.25						l						l .	•	•	•		•		
300-020 3 3 2.5 0.5 0.5 0.05 0.05 0.05 0.05 0.05 0.	4	CW ±0.025				l				l		l .	H						
GBA32L 033-005 3 0.33 0.8 0.5 1 1.2 0.05 0.005 0 +0.02 0 0 0 0 0 0 0 0 0		RE RE			l .	l				l	1				•			٦	
050-005				3			9.525	3.18	4.4		_			•	Ŭ				
075-005 0.75 2 0.05 -0.025 +0.025 +0.025 095-005 0.95 2 0.05 -0.025 +0.025 +0.025 100-005 1 2 0.05 -0.025 +0.025 +0.025 +0.025 +0.025			050-005		0.5					0.05	0	+ 0.05	•	•					
100-005 1 2 0.05 -0.025 + 0.025 • • • • • •			075-005		0.75	l				0.05	- 0.025	+ 0.025	•	•		•	•		
					0.95	l				l	1	1	•	•					
				ļ							- 0.025			•	(•	
			110-005		1.1	2				0.05				•					
120-005										l									
125-020 1.25 2 0.2 -0.025 +0.025 • • • • • • • • • • • • • • • • • •					l .	l				l									
140-020 1.4 2.5 0.2 -0.025 +0.025 • • •						l				l	1	1		1 1					KGBAL16
145,020 1.45 2 0.25 ±0.025 ±0.			***************************************			2											•		
150,020 1.5 2 0.25 + 0.025 + 0.025						2							_	•	ľ		•	•	
													_	•	•				
160-020						l													
175-020 1.75 2 0.2 -0.025 +0.025						2												•	
2.5 0.2 -0.025 + 0.025 • • • • • • •			200-020	ļ	2		ļ			0.7	- 0 025	+ 0 025	I						
225-020						l													
250-020 2.5 2.5 0.2 -0.025 +0.025 • • • • •						l				l								•	
300-020 3 2.5 0.2 -0.025 + 0.025 •					l .														
Mostrado versão à direita Condições de corte recomendadas 🏟 G14	Mostrado versão	à direita						<u> </u>				ndicõe	۲ م	e (ort	o ro	cor	ner	ndadas 📤 G141

CDX exibe a profundidade de canal disponível.

Inserto

Aço carbono / Aço liga

Aço inoxidável Ferro fundido Metais não ferrosos

Ligas de titânio

CW

0.5

0.75 2

0.95 2

> 1 2

1.25 2

1.45 2

1.5 2

1.75

2

2.5

0.5

0.75

0.95 2

> 1 2

1.25 2

1.45 2

1.5 2

1.75 2

2 2.5

2.5 2.5

2 3

3

1.25

2 2.5

1 1.5 2

2.5

9.525 3.18 4.4

9.525 3.18 4.4 0.1

2

2.5

2.5

1

2

9.525 3.18

Nº de arestas

Descrição

050-005F

075-005F

095-005F

100-005F

125-020F

145-020F

150-020F

175-020F

200-020F

250-020F

050-005F

075-005F

095-005F

100-005F

125-020F

145-020F

150-020F

175-020F

200-020F

250-020F

200-100R

300-150R

GBA32R

GBA32L

GBA32R

Materiais duros (~ 40HRC)

Materiais duros (40HRC ~)

CDXIC S D1 RE LE

Dimensão (mm)

GBA32

GBA32R 125-010 150-010 200-010

1 aresta

CDX exibe a profundidade de canal disponível.

Mostrado versão à direita

Condições de corte recomendadas
 G141

• •

• •

•

Metal

duro

PVD

PR1215 PR1625 TN620 KPD001 KPD010

•

•

•

•

•

•

•

•

•

•

•

•

•

Tolerância (mm)

CW

max.

+0.05

+0.025

+0.025

+ 0.025

+ 0.025

+0.025

+ 0.025

+ 0.025

+ 0.025

+ 0.025

+0.05

+ 0.025

+0.025

+ 0.025

+0.025

+0.025

+0.025

+ 0.025

+ 0.025

+0.025

+ 0.025

+0.03

CW

min.

0

0.025

0.025

- 0.025

- 0.025

- 0.025

0.025

- 0.025

0.025

- 0.025

0

0.025

- 0.025

0.025

- 0.025

- 0.025

0.025

- 0.025

- 0.025

- 0.025

0.025

- 0.03

0.05

0.05

0.05

0.05

0.2

0.2

0.2

0.2

0.2

0.2

0.05

0.05

0.05

0.05

0.2

0.2

0.2

0.2

0.2

0.2

1.5

1.7

4.4

•

PCD

M

N

S

Н

Porta-ferramenta

aplicável

⊕ G13~G17

G89

KGBAR...16

KGBAR...16JCT

KGBASL...16

KIGBAL...16

KGBAL...16

KGBAL...16JCT

KGBASR...16

KIGBAR...16

KGBAR...16

KGBAR...16JCT

KGBASL...16 KIGBAL...16

KGBAR...16

KGBAR...16JCT

KGBASL...16

KIGBAL...16

Condições de corte recomendadas 🌒 G141

GBA43

				Acı	o carbono	o / Aço liga	1								(4)				Р
				_	o inoxidá									•	(4)	П	_		M
				_	rro fundic								•	<u>ر</u>		9			K
					tais não								П			•			N
				Lia	as de titá	inio										•			S
				_		ıros (~ 40	HRC)						•	T	0				
						ıros (40HF							П	Ť	T	П			Н
							Dimens	ão (mm)			Tolerâno	ia (mm)	М	etal	dure		Се	rmet	
ln.	serto		Docericão	N° de arestas										PVD		-	PVD	-	Porta-ferramenta aplicável
""	SET LO		Descrição	N° de	CW	CDX	IC	S	D1	RE	CW min.	CW max.	PR1215	PR905	PR930	KW10	PV7040	TC40N TN90	● G13~G17 G89
		GBA43R	125-010		1.25	2		4.76		0.1			•	•					
		ווכדוועט	125-010		1.25	2		4.76		0.1				•	•	•	•	• •	
			140-020		1.4	3.5		4.76		0.2			•	•)				
			145-020		1.45	2		4.76		0.2	T					•		• •	
						3.5							•		•				
			150-010 150-020		1.5	3.5 3.5		4.76		0.1			H						KGBAR22-15
			170-020		1.5 1.7	3.5		4.76 4.76		0.2							-	•	KGBAR22-15JCT
			175-020		1.75	3.5		4.76		0.2			•		•	•		• •	KGBASL22-15 KIGBAL22
			185-020		1.85	3.5		4.76		0.2			•	•	•	•		• •	NIUDALZZ
			195-020		1.95	3.5		4.76		0.2			•	D					
			200-010		2	3.5		4.76		0.1			•	D		ļļ.			
			200-020		2	3.5		4.76		0.2							•	• •	
			225-020 230-020		2.25	3.5 3.5		4.76 4.76		0.2									
	CW ±0.025		250-010		2.5	5		4.76	·····	0.1									*1
	IC REPRESENTATION OF THE PROPERTY OF THE PROPE		250-030	3	2.5	4 5	12.7	4.76	5.5	0.3	- 0 025	+ 0.025				•	•	• •	*2 *1
			265-030		2.65	4		4.76		0.3						•		• •	*2
			280-030		2.8	4 5		4.76		0.3						•		• •	*2
			300-010		3	5		4.76		0.1	·····		•	D	Ĭ				*1
			300-030		3	4 5		4.76		0.3						•	•	• •	*2
			325-030	ļ	3.25	5		4.76	ļ	0.3									*1
			330-030		3.3	4 5		4.76		0.3			•			•		• •	*2 *1
			350-010		3.5	5		4.76		0.1	†		•	Þ					
			350-030		3.5	5		4.76		0.3			•	•	•	•		• •	NCDVD 33.32
			400-010		4	5		4.76		0.1			•	D					KGBAR22-35 KGBAR22-35JCT
			400-040	ļ	4	5		4.76		0.4	ļ		•	•	•		•	• •	KGBASL22-35
			430-040 450-040		4.3 4.5	5		4.76 4.76		0.4					•				KIGBAL22
			480-040		4.8	5		4.76		0.4								•	
			100 0 10		7.0					U.T					Ľ				

Mostrado versão à direita

Externo Interno

Face

**CDX exibe a profundidade de canal disponível.

*1: KGBAR...22-25T5, KGBAR...22-25JCT, KGBASL...22-25T5, KIGBAL...22

*2: KGBAR...22-25, KGBAR...22-25T5, KGBASL...22-25, KGBASL...22-25T5, KIGBAL...22

: Item standard

				Aço	carbono	/ Aço liga	<u> </u>						06		0			Р
				_	o inoxidáv								• •		0			M
				Fer	ro fundid	lo							•	9	C			K
				Me	tais não f	ferrosos								П	•	•		N
				Lig	as de titâ	nio									•			S
				Ma	teriais du	ros (~ 40	HRC)						•		0			
				Ma	teriais du	ros (40HF	RC ~)						П	П		T		Н
							Dimens	ão (mm)			Tolerâno	tia (mm)	M	etal d	uro	Ce	ermet	
				restas									F	PVD	-	PVD	-	Porta-ferramenta aplicável
ln:	serto		Descrição	N° de arestas	CW	CDX	IC	S	D1	RE	CW min.	CW max.	PR1215	PR905	PR930	PV7040	TC40N TN90	⊕ G13~G17 G89
		GBA43L	125-010		1.25	2		4.76		0.1			•	,				
		dD/(13E	125-020		1.25	2		4.76		0.2			•		•	•	• •	
			140-020		1.4	3.5		4.76		0.2			•	•				
			145-020		1.45	2		4.76		0.2							• •	
						3.5							•)	•			
			150-010		1.5	3.5		4.76		0.1			•					KGBAL22-15
			150-020		1.5	3.5		4.76		0.2					•		• •	KGBAL22-15JCT
			170-020 175-020		1.7 1.75	3.5 3.5		4.76 4.76		0.2				H				KGBASR22-15
			185-020		1.75	3.5		4.76		0.2							•	KIGBAR22
			195-020		1.95	3.5		4.76		0.2								
			200-010		2	3.5		4.76		0.1			•)				
			200-020		2	3.5		4.76		0.2			•	•	•	•	• •	
			225-020		2.25	3.5		4.76		0.2			•)				
4	CW ±0.025		230-020		2.3	3.5		4.76		0.2			•	•	•	<u>.</u>	• •	
	IC RE RE		250-010		2.5	5		4.76		0.1			•	2				*3
			250-030	3	2.5	5	12.7	4.76	5.5	0.3	- 0.025	+ 0.025					• •	*4 *3
			265 020		2.65	4		4.76		0.3					•	•	•	*4
	- 		265-030		2.65	5		4.76		0.3			•)	•			*3
			280-030		2.8	5		4.76		0.3			•	,			•	*4
			300-010		3	5		4.76		0.1			•)				*3
			300-030		3	4 5		4.76		0.3					•	•	• •	*4 *3
						4									٦,		•	*4
			330-030		3.3	5		4.76		0.3			•		•			*3
			350-010		3.5	5		4.76		0.1		[•)				
			350-030		3.5	5		4.76		0.3			•	•	•		• •	KGBAL22-35
			400-010		4	5		4.76		0.1			•					KGBAL22-35
			400-040 430-040		4	5 5		4.76		0.4	ļ						• •	KGBASR22-35
			430-040 450-040		4.3 4.5	5		4.76 4.76		0.4 0.4								KIGBAR22
			480-040		4.8	5		5		0.4								
			400-040		4.0	د		د		0.4								

Condições de corte recomendadas 🕞 G141

Mostrado versão à direita
CDX exibe a profundidade de canal disponível.
*3 : KGBAL...22-25T5, KGBAL...22-25JCT, KGBASR...22-25T5, KIGBAR...22
*4 : KGBAL...22-25, KGBAL...22-25T5, KIGBAR...22

			Ac	o carbono	/ Aço ligi	a								Р
			_	o inoxidáv										M
			Fei	rro fundid	lo									K
			Me	etais não i	ferrosos									N
			Lig	jas de titâ	inio									S
			Ma	ateriais du	ıros (~ 40	HRC)								Н
			Ma	ateriais du	ıros (40HI	RC ~)								"
						Dim	iensão (i	mm)			Tolerând	ia (mm)	Cermet	
ln	serto	Descrição	Nº de arestas	CW	CDX	IC	S	D1	RE	LE	CW min.	CW max.	TN620 ' Ce	Porta-ferramenta aplicável G13~G17 G89
		GBA43R 125-020F 145-020F 150-020F 175-020F 185-020F 200-020F 230-020F		1.25 1.45 1.5 1.75 1.85 2 2.3	2 2 3.5 3.5 3.5 3.5 3.5		4.76 4.76 4.76 4.76 4.76 4.76 4.76		0.2 0.2 0.2 0.2 0.2 0.2 0.2				• • • • • •	KGBAR22-15 KGBAR22-15JCT KGBASL22-15 KIGBAL22
		250-030F 265-030F 280-030F 300-030F 330-030F		2.5 2.65 2.8 3 3.3	4 4 4 4 4		4.76 4.76 4.76 4.76 4.76		0.3 0.3 0.3 0.3 0.3				• • • •	*2
	IC RE BE	350-030F 400-040F 430-040F 450-040F 480-040F	3	3.5 4 4.3 4.5 4.8	5 5 5 5	12.7	4.76 4.76 4.76 4.76 5	5.5	0.3 0.4 0.4 0.4 0.4	-	- 0.025	+ 0.025	• • • •	KGBAR22-35 KGBAR22-35JCT KGBASL22-35 KIGBAL22
	Aresta afiada	GBA43L 125-020F 145-020F 150-020F 175-020F 185-020F 200-020F 230-020F		1.25 1.45 1.5 1.75 1.85 2 2.3	2 2 3.5 3.5 3.5 3.5 3.5				0.2 0.2 0.2 0.2 0.2 0.2 0.2				• • • • • •	KGBAL22-15 KGBAL22-15JCT KGBASR22-15 KIGBAR22
		250-030F 265-030F 280-030F 300-030F 330-030F		2.5 2.65 2.8 3 3.3	4 4 4 4		4.76		0.3 0.3 0.3 0.3 0.3				• • • •	*4
		350-030F 400-040F		3.5 4	5 5				0.3 0.4				•	*6

Mostrado versão à direita

Externo Interno

Face

Condições de corte recomendadas 🌒 G141

^{*}CDX exibe a profundidade de canal disponível.

*2: KGBAR...22-25, KGBAR...22-25T5, KIGBAR...22-25JCT, KGBASL...22-25, KGBASL...22-25T5, KIGBAL...22

*4: KGBAL...22-25, KGBAL...22-25T5, KGBASR...22-25JCT, KGBASR...22-25, KGBASR...22-25T5, KIGBAR...22

*6: KGBAL...22-35, KGBAL...22-35JCT, KGBASR...22-35, KIGBAR...22

				Aço	carbono	/ Aço liga								u		P
					inoxidá								•	•		М
				Fer	ro fundid	0							•			K
				Me	tais não 1	errosos								T		N
				Lig	as de titâ	nio										S
				Ma	teriais du	ros (~ 40	HRC)						•			
				Ma	teriais du	ros (40HF	RC ~)									Н
							Dimens	ão (mm)			Tolerând	ia (mm)	Met		Cer-	
				S				,					dur	0	met	Porta-ferramenta
				Nº de arestas									PVI	D	-	aplicável
ln In	serto		Descrição	de al	au.	CDV				25	CW	CW	- [+		● G13~G17
				å	CW	CDX	IC	S	D1	RE	min.	max.	PR1215	625	TN620	G89
													PR1	FE	Ž	
	I													+	+	
		GBA43R	140-010GM		1.4	3.5				0.1			•	•	•	VCDAD 22.45
			150-020GM		1.5	3.5				0.2			•	•	•	KGBAR22-15 KGBAR22-15JCT
			175-020GM		1.75	3.5				0.2			•	•		KGBASL22-15
			185-020GM 200-020GM		1.85 2	3.5 3.5				0.2						KIGBAL22
			230-020GM		2.3	3.5				0.2						
			250-030GM	ļ	2.5	5				0.3	·····		•	•	•	-
			265-030GM		2.65	5				0.3			•	•	•	*2
			300-030GM		3	5				0.3			•	•	•	*2
	IC		330-030GM	ļ	3.3	5				0.3			•	•	•	
	RE REAS		350-030GM		3.5	5				0.3			•	•	•	*5
		CDA 431	400-040GM	3	4	5	12.7	4.76	5.5	0.4	- 0.025	+ 0.025	•	•	•	
		GBA43L	140-010GM 150-020GM		1.4 1.5	3.5 3.5				0.1						KGBAL22-15
	Quebra-cavaco moldado		175-020GM		1.75	3.5				0.2						KGBAL22-15
			185-020GM		1.85	3.5				0.2			•	•	•	KGBASR22-15
			200-020GM		2	3.5				0.2			•	•	•	KIGBAR22
			230-020GM		2.3	3.5				0.2			•	•	•	
			250-030GM		2.5	5				0.3			•	•	•	
			265-030GM		2.65	5				0.3			•	•	•	*4
			300-030GM 330-030GM		3 3.3	5 5				0.3						
			350-030GM		3.5	5				0.3						
			400-040GM		4	5				0.4			•	•	•	*6
		CDA 43D												+		VCDAD 22.15
		GBA43R	175-020MY 185-020MY		1.75 1.85	3.5 3.5				0.2						KGBAR22-15 KGBAR22-15JCT
			200-020MY		2	3.5				0.2						KGBASL22-15
			230-020MY		2.3	3.5				0.2						KIGBAL22
			250-030MY	l	2.5	5				0.3	T				•	
			265-030MY		2.65	5				0.3						*2
	0.025		300-030MY		3	5				0.3					•)
	IC RE BE		330-030MY	ļ	3.3	5			ļ	0.3	ļ					
			350-030MY 400-040MY	3	3.5 4	5 5	12.7	4.76	5.5	0.3	-0.025	+ 0.025				*5
		GBA43L	175-020MY	ر	1.75	3.5	12./	4./0	ر.ر	0.4	- 0.023	r 0.023		+		KGBAL22-15
	Quebra-cavaco moldado	3577132	185-020MY		1.85	3.5				0.2						KGBAL22-15JCT
	Quenia-cavaco illoluddo		200-020MY		2	3.5				0.2					•	KGBASR22-15
			230-020MY	ļ	2.3	3.5				0.2					•	KIGBAR22
			250-030MY		2.5	5				0.3						
			265-030MY		2.65	5				0.3						*4
			300-030MY 350-030MY	ļ	3.5	5				0.3	ļ					<u> </u>
			400-040MY		3.5 4	5				0.3						*6
	J		TOU UTUIVIT							0.4					•	1

Condições de corte recomendadas 🌒 G141

Mostrado versão à direita

CDX exibe a profundidade de canal disponível.

*2 : KGBAR...22-25, KGBAR...22-25T5, KGBAR...22-25JCT, KGBASL...22-25, KGBASL...22-25T5, KIGBAL...22

*4 : KGBAL...22-25, KGBAL...22-25T5, KGBASL...22-25JCT, KGBASR...22-25, KGBASR...22-25T5, KIGBAR...22

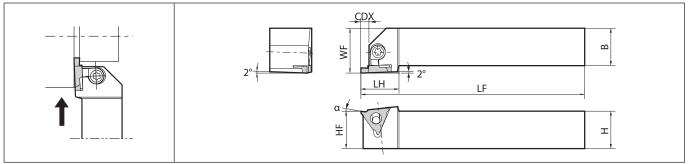
*5 : KGBAR...22-35, KGBAR...22-35JCT, KGBASL...22-35, KIGBAL...22

*6 : KGBAL...22-35, KGBAL...22-35JCT, KGBASR...22-35, KIGBAR...22

Externo Interno

Face

Aço inoxidável Ferro fundido	М
1010 1011010	***
	K
Metais não ferrosos	N
Ligas de titânio ●	S
Materiais duros (~ 40HRC)	Н
Materiais duros (40HRC ~) □ □	
Descrição Descrição Dimensão (mm) Dimensão (mm) Tolerância (mm) Metal duro Cermet CBN PCD	
	Porta-ferramenta
Inserto Descrição Descri	aplicável
Inserto Descrição B B CW CDX IC S D1 RE LE CW CW	● G13~G17
N	G89
	KGBAR22-15
	KGBAR22-15ICT
	KGBASL22-15 KIGBAL22
20 120	
1.25	*2
400-200R - 3 4 5 12.7 4.76 5.5 20.025 +0.025	*5
	KGBAL22-15
150-075R	KGBAL22-15JCT KGBASR22-15
Raio completo 200-100R 2 3.5 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	KIGBAR22
300-150R 3 4 1.5 1.5	*4
400-200R	*6
GBA43R 100-050RF 1 2 0.5 0.75 150-075RF 1.5 3.5 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75	KGBAR22-15 KGBAR22-15JCT
200-100RF	KGBASL22-15 KIGBAL22
C C C C C C C C C C	
300-150RF 3 4 1.5	*2
400-200RF F 3 4 5 12.7 4.76 5.5 2 - -0.025 + 0.025	*5
	KGBAL22-15 KGBAL22-15JCT
Areta afada	KGBASR22-15
250-125RF 2.5 4 1.25	KIGBAR22
300-150RF 3 4 1.5	*4
GBA43R 125-020 1.25 2	KGBAR22-15
GD/15/1 125 220 1.25 2 1	KGBAR22-15JCT
200-020 2 3.5	KGBASL22-15 KIGBAL22
CW=0.03	*2
300-020 E008 1 3 4 12.7 4.76 5.5 0.2 1.9 -0.03 +0.03	
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	KGBAL22-15 KGBAL22-15JCT
130 020 1.5 3.5	KGBASR22-15 KIGBAR22
250-020 2.5 4	
300-020 3 4 6	*4
GBA43R 125-010 1.25 2	KGBAR22-15
150-010 1.5 3.5	KGBAR22-15JCT KGBASL22-15
200-010 2 3.5	KIGBASL22-15 KIGBAL22
CW-0.03 RE TO RETO RE	*2
300-010 F 1 3 4 12.7 4.76 5.5 0.1 1.9 -0.03 +0.03	
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	KGBAL22-15 KGBAL22-15JCT
150-010 15 5.5	KGBASR22-15 KIGBAR22
250-010 2.5 4 • •	
300-010 3 4 5	*4
Mostrado versão à direita CDX exibe a profundidade de canal disponível. CDX exibe a profundidade de canal disponível.	dadas 🖨 G14 1


CDX exibe a profundidade de canal disponível.

Insertos CBN e PCD são vendidos em caixa com 1 peça

^{*2 :} KGBAR...22-25, KGBAR...22-25T5, KGBAR....22-25JCT, KGBASL...22-25, KGBASL...22-25T5, KIGBAL....22
*4 : KGBAR...22-25, KGBAL...22-25T5, KGBAL...22-25JCT, KGBASR...22-25, KGBASR...22-25T5, KIGBAR...22
*5 : KGBAR...22-35, KGBAR...22-35JCT, KGBASR...22-35, KIGBAL...22
*6 : KGBAL...22-35, KGBAL...22-35JCT, KGBASR...22-35, KIGBAR...22

KGBA (Canal externo / Canal raso)

Mostrado versão à direita | Inserto direito para porta-ferramenta direito, inserto esquerdo para porta-ferramenta esquerdo.

Dimensões do porta-ferramenta

											Peças de	reposição	
	Descrição		oni- dade			Dime	nsão	(mm)		Conjunto do grampo	Chave	Insertos aplicáveis
		R	L	XO	Н	В	LH	HF	LF	WF			
KGBA ^R /L	2020K-16	•	•	2.5	20	20	24	20	125	25	LGBA-16 [®] / _L S	FT-15	Tino CDA228/
	2525M-16	•	•	2.5	25	25	24	25	150	30	LGDA-107L3	F1-13	Tipo GBA32 [™] /∟
KGBA ^R /L	2020H22-15	•		4									
	2020H22-25	•		4.5					100		LGBA-22RS		
	2020H22-35	•		5.5									
	2020K22-15	•	•	4	20	20		20		25			
	2020K22-25	•	•	4.5					125				
	2020K22-25T5	•	•	5.5			25.5		123			FT-15	Tipo GBA43 ^R /L
	2020K22-35	•	•	3.3							LCDA 228/C		
	2525M22-15	•	•	4							LGBA-22 ^R / _L S		
	2525M22-25	•	•	4.5	25	25		25	150	30			
	2525M22-25T5	•	•	5.5	23	23		23	130	30			
	2525M22-35	•	•	٥.٥									

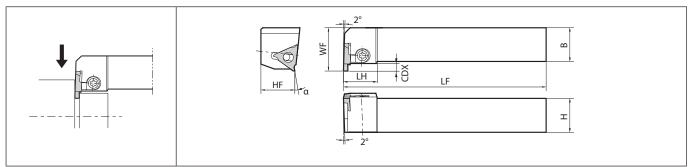
CDX indica a distância entre o porta-ferramenta e a aresta de corte. Profundidade de canal disponível: "CDX" do inserto. $Conjunto\ do\ grampo: LGBA-\bigcirc RS\ para\ porta-ferramentas\ direito\ e\ LGBA-\bigcirc LS\ para\ porta-ferramenta\ esquerdo.$

Ângulo de saída (g) após instalação do inserto GBA

Allyul	o de salda (d) apos ilistalação do ilis	פונט שו	DA			
	GBA32 ^P /LOOO-OOO		GBA43 ^P /LOOO-OOO	GB/	A43 ^P /LOOO-OOOR (Rai	o completo)
α	Classes do Inserto	α	Classes do Inserto	α	Classes do Inserto	Descrição do raio completo
10°	TN620, TN90, PV7040 PR930, PR1215, PR1625, PR905	0°	KBN510, KBN525	10°	TN620, TN90, PV7040, PR930 PR1215, PR1625, PR905	050R~150R
	KPD001, KPD010	10°	TN620, TC40N, TN90, PV7040 PR930, PR1215, PR1625, PR905 KPD001, KPD010	140	TN620, TN90, PV7040, PR930 PR1215, PR1625, PR905	200R
20°	KW10	20°	KW10	14°	KW10	050R~200R

Ângulo de saída (α) após instalação do inserto GBA-GM

Aliguio de Salda (d) apos ilistalação do ilis									
α	Descrição do inserto								
10°	GBA43 ^R /L150-020GM								
15°	GBA43 ^P /∟175-020GM ≀ GBA43 ^P /∟265-030GM								
12°	GBA43 ^P /L300-030GM								


 α indica o ângulo de saída no centro da largura da aresta após a instalação do inserto.

Ângulo de saída (α) após instalação do inserto GBA-MY

α	Descrição do inserto
	GBA43 ^P /L175-020MY
15°	ì
	GBA43 ^R /L350-030MY
14°	GBA43 ^P /L400-040MY

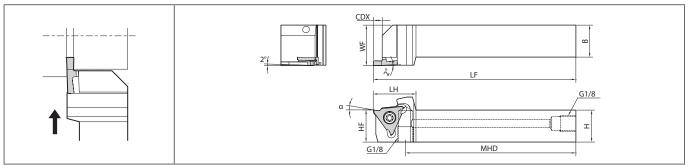
α indica o ângulo de saída no centro da largura da aresta após a instalação do inserto.

KGBAS (Canal externo / Canal raso)

Mostrado versão à direita | Inserto esquerdo para porta-ferramentas direito, inserto direito para porta-ferramenta esquerdo

Dimensões do porta-ferramenta

Externo Interno Face


											Peças de	reposição	
	Descrição		oni- lade		ı	Dime	nsão	(mm))		Conjunto do grampo	Chave	Insertos aplicáveis
		R	L	XO	Н	В	LH	HF	LF	WF			
KGBAS ^R /L	2020K-16	•	•	2.5	20	20	25	20	125	25	ICDA 161/C	FT-15	Tine CPA22I/
	2525M-16	•	•	2.5	25	25	25	25	150	30	LGBA-16 ^L / _R S	11-13	Tipo GBA32 ^L / _R
KGBAS ^R /L	2020K22-15	•	•	4									
	2020K22-25	•	•	4.5	20	20		20	125	27			
	2020K22-25T5	•	•	5.5	20	20		20	123	2/			
	2020K22-35	•	•	5.5			٦٢.				 CDA 22 / C	FT 15	Time CDA421/
	2525M22-15	•	•	4			25				LGBA-22 ^L / _R S	FT-15	Tipo GBA43 ^L / _R
	2525M22-25	•	•	4.5	25	25		25	150	32			
	2525M22-25T5	•	•		25	25		25	150	32			
	2525M22-35	•	•	5.5									

 $CDX\ indica\ a\ distancia\ entre\ o\ porta-ferramenta\ e\ a\ aresta\ de\ corte.\ Profundidade\ de\ canal\ dispon\'ivel: "CDX"\ do\ inserto.$

Veja página $\mathbf{G13}$ para ângulo de saída (α) após instalação do inserto.

Conjunto do grampo : LGBA-OLS para porta-ferramentas direito e LGBA-ORS para porta-ferramenta esquerdo.

KGBA-JCT (Canal externo / Canal raso, porta-ferramentas com passagem para refrigeração interna)

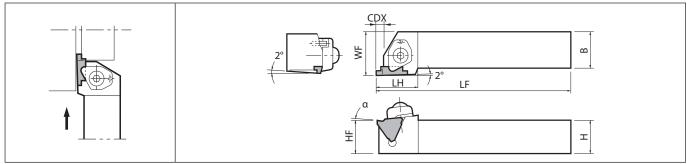
Mostrado versão à direita | Inserto direito para porta-ferramenta direito, inserto esquerdo para porta-ferramenta esquerdo.

Dimensões do porta-ferramenta

														Peças de	reposição		
	Descrição		oni- dade			Di	imen	são (mr	n)			de refrigeração	Bujão	Parafuso	Chave	Chave	Insertos aplicáveis G6~G12
		R	L	XOX	Н	В	LH	MHD	HF	LF	WF	Furo d					
KGBA ^R /L	2020K-16JCT	•	•	2.5	20	20	24	107.5	20	125	25	Cim	HSG1/8X8.0	SB-4085TR	FT-15		Tipo GBA32 ^R /∟
	2525K-16JCT	•	•	2.5	25	25	24	107.5	25	123	30	SIIII	U.004/10CH	3D-40631K	F1-13	-	TIPO GDA527L
KGBA ^R /L	2020K22-15JCT	•	•	4													
	2020K22-25JCT	•	•	5.5	20	20			20		25						
	2020K22-35JCT	•	•	3.3			26.5	105		125		C:	UCC1/0V0.0	CD FAORTD		ITW 20	Time CDA42R/
	2525K22-15JCT	•	•	4			26.5	105		125		SIM	HSG1/8X8.0	SB-5085TR	-	LTW-20	Tipo GBA43 ^R /L
	2525K22-25JCT	•	•		25	25			25		30						
	2525K22-35JCT	•	•	5.5							30						

CDX indica a distância entre o porta-ferramenta e a aresta de corte. Profundidade de canal disponível: "CDX" do inserto.

Veja página G13 para ângulo de saída (α) após instalação do inserto.


O porta-ferramentas KGBA-JCT é do tipo fixação por parafuso.

Consulte a página **H16** and **H17** para peças de conexão para passagem de refrigerante.

KGB (Canal externo / Canal raso)

Mostrado versão à direita | Inserto direito para porta-ferramenta direito, inserto esquerdo para porta-ferramenta esquerdo.

Dimensões do porta-ferramenta

۷	
	1

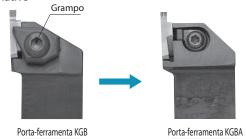
Externo

Interno

Face

												Peças de	reposição		
	Descrição		oni- lade			Dime	nsão	(mm))		Grampo	Parafuso de fixação	Mola	Chave	Insertos aplicáveis G6~G12
		R	L	XO	Н	В	LH	HF	LF	WF					
KGB ^R /L	2020K-16	0	0	2.5	20	20	24	20	125	25	CCDB/	DUCYAE	CD C	110/ 4	Time CDA22B/
	2525M-16	0	0	2.5	25	25	24	25	150	30	CGB [₽] /L	BH6X25	SP-6	LW-4	Tipo GBA32 ^P /L
KGB ^R /L	2020K22-15	0	0	4											
	2020K22-25	0	0	4.5	20	20		20	125	25					
	2020K22-35	0	0	5.5			25.5				CCDR/	DUCYAE	CD C	1111/4	The CDA42R/
	2525M22-15	0	0	4			25.5				CGB [₽] /L	BH6X25	SP-6	LW-4	TIpo GBA43 ^R /L
	2525M22-25	0	0	4.5	25	25		25	150	30					
	2525M22-35	0	0	5.5											

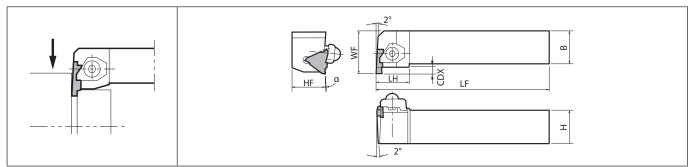
KGB mudará para KGBA=> **G13**


 $CDX\ indica\ a\ distancia\ entre\ o\ porta-ferramenta\ e\ a\ aresta\ de\ corte.\ Profundidade\ de\ canal\ disponível: "CDX"\ do\ inserto.$

 ${\it Grampo KGB: CGBR para porta-ferramenta direito e CGBL para porta-ferramenta esquerdo.}$

Tabela de referência de porta-ferramentas alternativo

KGBA 🗲	(KGB)
KGBA ^P /∟22-15	KGB ^R /∟22-15
KGBA ^P /∟22-25	KGB ^R /∟22-25
KGBA ^P /∟22-35	KGB ^P /∟22-35
KGBA ^R /L22-25T5	KGB ^R /L22-25 (A profundidade de canal disponível tem um limite)


· O tipo de haste curta não está disponível para KGB / KGBS.

^{*} O porta-ferramenta KGB / KGBS será alterado para KGBA / KGBAS. Melhor fluxo do cavaco.

KGBS (Canal externo / Canal raso)

Mostrado versão à direita | Inserto esquerdo para porta-ferramentas direito, inserto direito para porta-ferramenta esquerdo

Dimensões do porta-ferramenta

												Peças de	reposição		
	Descrição		oni- lade			Dime	nsão	(mm))		Grampo	Parafuso de fixação	Mola	Chave	Insertos aplicáveis G6~G12
		R	L	XOX	Н	В	LH	HF	LF	WF					
KGBS ^R /L	2020K-16	0	0	2.5	20	20	25	20	125	25	CGB [⊥] / _R	BH6X25	SP-6	LW-4	Tipo GBA32 ^L / _R
	2525M-16	0	0	2.5	25	25	25	25	150	30	CGD-7 _R	рцоут	3r-0	LVV-4	TIPO GDA327R
KGBS ^R /L	2020K22-15	0	0	4											
	2020K22-25	0	0	4.5	20	20		20	125	27					
	2020K22-35	0	0	5.5			25				CGB [∟] / _R	BH6X25	SP-6	LW-4	Tino CRA42L/
	2525M22-15	0	0	4			23				Cap ₇ _R	рпол23)r-0	LVV-4	Tipo GBA43 ^L / _R
	2525M22-25	0	0	4.5	25	25		25	150	32					
	2525M22-35	0	0	5.5											

KGBS mudará para KGBAS=> **G14**

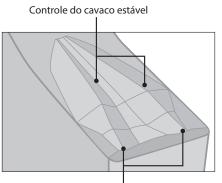
Grampo KGBS: CGBL para porta-ferramenta direito e CGBR para porta-ferramenta esquerdo.

Tabela de referência de porta-ferramentas alternativo

KGBAS ←	(KGBS)
KGBAS ^P /∟22-15	KGBS ^R /∟22-15
KGBAS ^P /∟22-25	KGBS ^R /∟22-25
KGBAS ^P /L22-35	KGBS ^R /∟22-35
KGBAS ^P /L22-25T5	KGBS ^R /L22-25 (A profundidade de canal disponível tem um limite)

GBF (para torno automático)

Alta precisão com tolerância de largura da aresta de ± 0,02 mm Tecnologia de revestimento MEGACOAT de alta eficiência para uma longa vida útil da ferramenta


Controle do cavaco estável com quebra-cavaco GL

O quebra-cavaco GL controla o cavaco de forma estável tanto em canal quanto em torneamento.

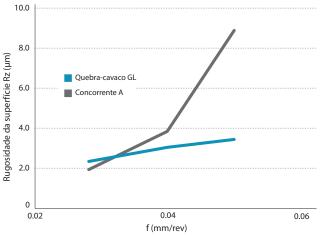
(O torneamento não é recomendado para GBF32R075-005GL)

Externo Interno Face

Os cavacos são reduzidos, enrolados e quebram uniformemente na usinagem de baixo avanço.

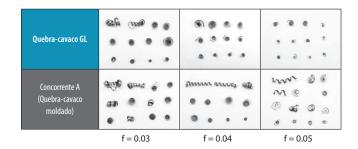
Evita o emaranhamento do cavaco

Comparação do controle do cavaco (avaliação interna)


	Quebra-cavaco GL	Concorrente A
Canal f = 0.05 mm/rev d = 1.5 mm		
Torneamento f = 0.04 mm/rev ap = 0.2 mm		

Condições de corte : Vc = 80 m/min, largura da aresta 1 mm Material: SUS304

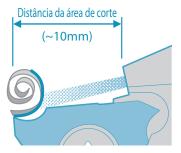
Bom acabamento superfícial


O quebra-cavaco GL controla os cavacos de forma estável na usinagem de alto avanço. Bom acabamento superficial da parede lateral

Comparação da rugosidade da superfície (avaliação interna)

Condições de corte : Vc = 80 m/min, d = 1,5 mm, $f = 0,03 \sim 0,05 \text{ mm/rev}$, largura da aresta 1 mm Material: SCM415

Comparação do controle do cavaco (avaliação interna)



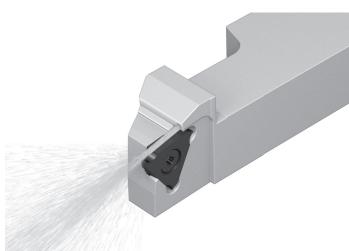
G

Canal

KGBF-JCTM (para torno automático)

Direciona o refrigerante para parte superior do inserto

Furo de refrigeração


Amplo fluxo de refrigerante para a aresta de corte Impede a difusão do fluxo de refrigerante, e a redução de sua velocidade.

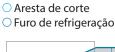
Direção do jato

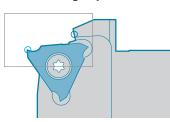
Refrigeração suficiente entre o quebra-cavaco e os cavacos Cavacos curvos de forma estável e refrigeração suficiente do inserto

- 1 Excelente controle do cavaco proporciona longa vida útil da ferramenta
- 2 A refrigeração superior melhora a vida últil da ferramenta

Canal externo KGBF-JCTM

- Fornece o refrigerante na direção da superfície de saída do inserto
- Especificações


Largura da aresta: 0.25 -3 mm


Quebra-cavaco retificado/quebra-cavaco moldado GL

Profundidade máxima do canal: 3 mm

Comparação da descarga do fluido refrigerante (Avaliação interna)

Cavacos pequenos e melhor refrigeração do inserto resultam em uma maior vida útil da ferramenta

GBF

Externo

Interno

Face

				Acc	carbono	/ Aco liga								9		Р
				- 3	inoxidáv	, ,								•		M
				Fer	ro fundid	0									•	K
				Me	tais não f	errosos	,	,	,			,	Ш		•	N
				Lig	as de titâ	nio								•	ල	S
				-	teriais du								Ц			Н
		1		Ma	teriais du	ros (40HI	RC ~)						Ш			
							Dimens	ão (mm)			Tolerând	ia (mm)		eta		
				S									a	urc		
			D	No de arestas									PV	D	-	Porta-ferramenta
ln:	serto		Descrição	de a	CW	CDX	IC	S	D1	RE	CW	CW				aplicável
				ž	CW	CDA	IC.	ر	וט	ILL	min.	max.	PR1215	1535	N15	Q Q 23 · Q 20
													R	PR	9	
		GBF32R	025-000F		0.25	0.6					- 0.02	+ 0.02	•	•	•	
		JUI JEIN	030-000F		0.23	0.8					- 0.02	+ 0.02	•	•	•	
			033-000F		0.33	0.8					- 0.025	+ 0.015	•	•	•	
			043-000F		0.43	1					- 0.025	+ 0.015	•	•	•	
			050-000F		0.5	1.2					- 0.02	+ 0.02	•	•		
			053-000F 065-000F		0.53 0.65	1.2 1.2					- 0.025 - 0.02	+ 0.015 + 0.02		•	•	
			075-000F		0.05	2					- 0.02	+ 0.02	•	•	•	
			080-000F		0.8	2					- 0.02	+ 0.02	•	•	•	
			095-000F		0.95	2					- 0.02	+ 0.02	•	•	•	KGBFR16F
			100-000F		1	2					- 0.02	+ 0.02	•	•		KGBFR16FJCTM KGBFSL16
			110-000F 120-000F		1.1 1.2	2 2					- 0.02 - 0.02	+ 0.02		•		SKGBFL16
			125-000F		1.25	2					- 0.02	+ 0.02	•	•	•	
			130-000F		1.3	2					- 0.02	+ 0.02	•	•	•	
			140-000F		1.4	2.7					- 0.02	+ 0.02	•	•	•	
			145-000F		1.45	2.7					- 0.02	+ 0.02	•	•	•	
			150-000F 165-000F		1.5 1.65	2.7 2.7					- 0.02 - 0.02	+ 0.02		•		
	±0.02		170-000F		1.03	3					- 0.02	+ 0.02	•	•	•	
4	IC RE CW RE		175-000F		1.75	3					- 0.02	+ 0.02	•	•	•	
			200-000F	3	2	3	9.525	3.18	4.4	0	- 0.02	+ 0.02	•	•	•	
		GBF32L	025-000F		0.25	0.6	7.525	3.10			- 0.02	+ 0.02	•	•	•	
	ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا		030-000F 033-000F		0.3 0.33	0.8					- 0.02 - 0.025	+ 0.02 + 0.015		•		
	7ii esta anada		043-000F		0.33	1					- 0.025	+ 0.015	1	•		
			050-000F		0.5	1.2					- 0.02	+ 0.02	•	•	•	
			053-000F		0.53	1.2					- 0.025	+ 0.015	•	•	•	
			065-000F		0.65	1.2					- 0.02	+ 0.02		•	•	
			075-000F		0.75	2					- 0.02	+ 0.02		•		
			080-000F 095-000F		0.8 0.95	2 2					- 0.02 - 0.02	+ 0.02		•		
			100-000F		1	2					- 0.02	+ 0.02	•	•	•	KGBFL16F
			110-000F		1.1	2					- 0.02	+ 0.02	1 8	•	•	KGBFSR16
			120-000F		1.2	2					- 0.02	+ 0.02	1	•	•	
			125-000F		1.25	2					- 0.02	+ 0.02	•	•	•	
			130-000F 140-000F		1.3 1.4	2 2.7					- 0.02 - 0.02	+ 0.02 + 0.02		•		
			145-000F		1.45	2.7					- 0.02	+ 0.02	•	•	•	
			150-000F		1.5	2.7					- 0.02	+ 0.02		•	•	
			165-000F		1.65	2.7					- 0.02	+ 0.02	•	•	•	
			170-000F		1.7	3					- 0.02	+ 0.02	•	•	•	
			175-000F		1.75	3					- 0.02	+ 0.02		•		
		CDESOR	200-000F		2	-				0.05	- 0.02	+ 0.02	•	•	•	
A	IC RE CW RE	GBF32R	075-005GL 095-005GL		0.75 0.95	2 2				0.05			•	•		KCBED 14E
			100-005GL	_	1	2	0.535	2.40		0.05			•	•		KGBFR16F KGBFR16FJCTM
			150-010GL	3	1.5	2.7	9.525	3.18	4.4	0.1	- 0.02	+ 0.02	•	•		KGBFSL16
	~ FI		200-010GL		2	3				0.1			•	•		SKGBFL16
L	Quebra-cavaco moldado		300-010GL		3	3				0.1			•	•		
Mostrado versão	à direita								_		. z l .					dadas 📤 G142

Mostrado versão à direita Diâm. de corte máx.: Consulte a página **G27**

Condições de corte recomendadas 🕒 G142

GBF

		Acc	carbono	/ Aço liga	1						4	5		Р
		_	inoxidáv							*	0	•		M
		Fer	ro fundid	0								•	•	K
		Me	tais não f	errosos							П	•	•	N
		Lig	as de titâ	nio									0	S
		Ma	teriais du	ros (~ 40	HRC)									Н
		Ma	teriais du	ros (40HF	RC ~)									п
					Dimensa	io (mm)			Tolerând	cia (mm)		etal iro		
Inserto	Descrição	No de arestas							CW	CW	PVI) .	4	Porta-ferramenta aplicável
		ρ _ο Ν	CW	CDX	IC	S	D1	RE	min.	max.	PR1215	PKISSS	CIMD	● G23~G26
	GBF32R 025-005 033-005 033-005 033-005 043-005 050-005 055-005 075-010 080-005 080-010 095-005 100-010 110-005 110-010 120-005 125-010 130-005 125-010 130-005 140-010 145-005 145-010 150-005 150-010 155-005 150-010 165-005 165-010 170-005 170-010 175-005 175-010 200-005 200-010	3	0.25 0.3 0.33 0.43 0.5 0.5 0.75 0.75 0.8 0.8 0.95 1 1.1 1.2 1.2 1.25 1.25 1.3 1.4 1.4 1.45 1.5 1.5 1.65 1.65 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7	0.6 0.8 1 1.2 1.2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	9.525	3.18	4.4	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	- 0.02 - 0.025 - 0.025 - 0.025 - 0.026 - 0.020 - 0.	+ 0.02 + 0.015 + 0.015 + 0.015 + 0.02 + 0.002 + 0.002				KGBFR16F KGBFR16FJCTM KGBFSL16 SKGBFL16
	225-005 225-010 250-005 250-010 300-005 300-010		2 2.25 2.25 2.5 2.5 3 3	3 3 3 3 3				0.1 0.05 0.1 0.05 0.1 0.05 0.1	- 0.02 - 0.02 - 0.02 - 0.02 - 0.02 - 0.02 - 0.02	+ 0.02 + 0.02 + 0.02 + 0.02 + 0.02 + 0.02 + 0.02	•			

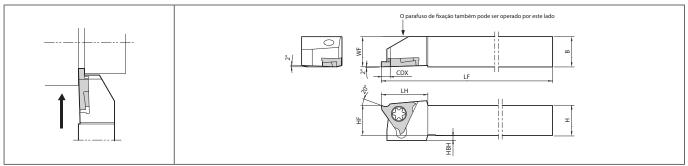
Mostrado versão à direita Diâm. de corte máx.: Consulte a página **G27** Condições de corte recomendadas 🌒 G142

GBF

Externo

Interno

Face


			Acc	carbono	/ Aco liga							6	(4)		P
			_	inoxidáv								-	٠		M
			Fer	ro fundid	0									•	K
			Ме	tais não f	errosos									•	N
			Lig	as de titâ	nio							Ш	•	ල	S
				teriais du								Ш	4		н
			Ma	teriais du	ros (40HF	RC ~)				ı					
			S			Dimens	ão (mm)			Tolerân	cia (mm)		leta Iuro		
Insert	to	Descrição	N° de arestas	CW	CDX	IC	S	D1	RE	CW min.	CW max.	PR1215 Ad	4	3W15 '	Porta-ferramenta aplicável G23,G25
		GBF32L 025-005 030-005 033-005 043-005 050-005 053-005 075-010 080-005 080-010 095-005 095-010 100-005 110-010 110-005 120-010 125-005 125-010 130-005 140-010 145-005 140-010 145-005 145-010 150-005 165-010 170-005 170-010 175-005 175-010 200-005 200-010 225-005	3	0.25 0.3 0.33 0.43 0.5 0.75 0.75 0.8 0.95 0.95 1 1.1 1.1 1.2 1.2 1.25 1.3 1.3 1.4 1.4 1.45 1.5 1.5 1.65 1.7 1.7 1.7 1.7 1.7 1.7 1.7 2 2 2.2 2.2 2.5 2.5	0.6 0.8 0.8 1 1.2 1.2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	9.525	3.18	4.4	0.05 0.05 0.05 0.05 0.05 0.05 0.1 0.05 0.05	- 0.02 - 0.02 - 0.025 - 0.025 - 0.025 - 0.02 - 0.02	+ 0.02 + 0.015 + 0.015 + 0.015 + 0.02 + 0.02				KGBFL16F KGBFSR16
		250-010 300-005 300-010		2.5 3 3	3 3 3				0.1 0.05 0.1	- 0.02	+ 0.02 + 0.02 + 0.02	•	•	•	
Mostrado versão à d	lireita								Condi	-õos do	corto	roce	l	on	dadas 🖨 G14 2

Mostrado versão à direita Diâm. de corte máx.: Consulte a página **G27**

Condições de corte recomendadas

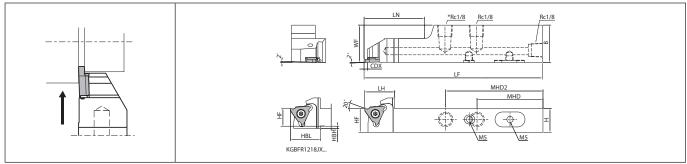
G142

KGBF-F (Canal externo / Canal raso)

Mostrado versão à direita | Inserto direito para porta-ferramenta direito, inserto esquerdo para porta-ferramenta esquerdo.

Dimensões do porta-ferramenta

											Peças de i	reposição	
Descrição	Disp bilio	oni- lade			Dir	nens	ăo (m	m)			Parafuso	Chave	Insertos aplicáveis ⊕ G20~G22
	R	L	CDX	Н	В	LH	HF	HBH	LF	WF			
KGBF ^R /L 1010JX-16F	•	•		10	10		10	4		10			
1212JX-16F	•	•	3	12	12	18.5	12	2	120	12	SB-4070TRW	FT-8	GBF32 ^F /∟ type
1616JX-16F	•	•	3 16 16	16	10.5	16		120	16	JD-40/UINW	1 1-0	dbi 32 /L type	
2020JX-16F	•	•		20	20		20			20			

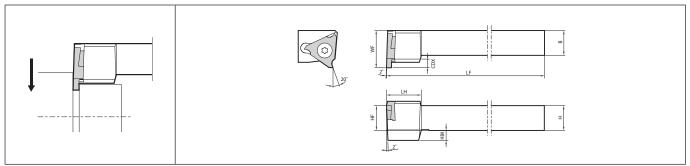

CDX indica a distância entre o porta-ferramenta e a aresta de corte. Profundidade de canal disponível: "CDX" do inserto.

Canal

KGBF-JCTM (Canal externo / Canal raso, porta-ferramentas com passagem para refrigeração interna)

Mostrado versão à direita | Inserto direito para porta-ferramenta direito. | KGBFR1218JX-16FJCTM : 2-Rc1/8

Dimensões do porta-ferramenta


Interno

Face

	•																			
e e																Peças de	reposição			
	Descrição	Disponibilidade					Din	nens	ão (m	ım)					de refrigeração	Bujão	Bujão	Parafuso	Chave	Insertos aplicáveis G20,G21
		R	XOX	Н	В	LH	MHD	MHD2	HF	НВН	HBL	LF	N	WF	Furod					
KGBFR	1218JX-16FJCTM	•		12	18		54	-	12	1.5	20		28	12			HS5X4LP			
	1625JX-16FJCTM	•	3	16	25	20	44	65	16			120	40	16	Sim	GP-1	пээх4LР	SB-4070TRW	FT-8	Tipo GBF32R
	2025JX-16FJCTM	•		20	23		44	כט	20	-	-		40	20			-			

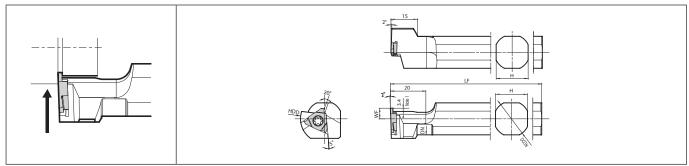
CDX indica a distância entre o porta-ferramenta e a aresta de corte. Profundidade de canal disponível: "CDX" do inserto. Consulte a página **H16** e **H17** para peças de conexão para passagem de refrigerante.

KGBFS (Canal externo / Canal raso)

Mostrado versão à direita | Inserto esquerdo para porta-ferramentas direito, inserto direito para porta-ferramenta esquerdo

Dimensões do porta-ferramenta

													Peças de i	reposição	
		Disp bilio	oni- lade			Dir	nens	ăo (m	m)			Parafuso	Chave	Insertos aplicáveis ⊕ G20~G22	
			R	L	CDX	Н	В	LH	HF	HBH	LF	WF			
I	KGBFS ^R /L	1010JX-16	•	•		10	10		10	4		15			
		1212JX-16	•	•	3	12	12	14	12	2	120	16	SB-4070TRW	FT-8	GBF32 ^L / _R
	1616JX-16			•		16	16		16	-		20			


CDX indica a distância entre o porta-ferramenta e a aresta de corte. Profundidade de canal disponível: "CDX" do inserto.

Canal

S-KGBF (Canal externo / Canal raso)

Mostrado versão à esquerda | Inserto direito para porta-ferramenta esquerdo. | Observação 1) CDX exibe a profundidade de canal disponível.

Dimensões do porta-ferramenta

C	
U	

Canal

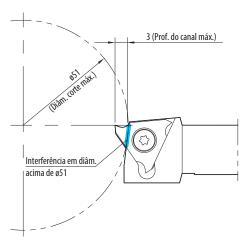
Externo Interno Face

	e e							Peças de	reposição	
Descrição	Disponibilidade		Dim	ensão	o (mn	1)		Parafuso	Chave	Insertos aplicáveis G20,G21
	L	DCON	Н	DN	HDD	LF	WF			
S12F- KGBFL16	•	12	11	11		80				
S14H- KGBFL16	•	14	13	13		100				
S15F- KGBFL16	•	15.875	15	15		85				
S16F- KGBFL16	•	16	כו	13		65				
S19G- KGBFL16	•	19.05	17	18	27	90	6			
S19K- KGBFL16	•	19.03	17	10		120		SB-4070TRW	FT-8	Tipo GBF32R
S20G- KGBFL16	•	20	18	19		90				
S20K- KGBFL16	•	20	10	19		120				
S22K KGBFL16	•	22	20	21		120				
S25.0H- KGBFL16	•	25	23	24	32	100	10			
S25K- KGBFL16	•	25.4	_ 23	24	32	100	10			

Canal externo

Compatibilidade com GBF e GBA

- 1. GBF é compatível com os porta-ferramentas KGBA / KGBAS
 - Cuidado: A profundidade máxima de canal para porta-ferramentas KGBA / KGBAS é de 2,5 mm
- 2. Os insertos GBA também são compatíveis com porta-ferramentas KGBF-F
 - Cuidado : O ângulo de saída após a instalação no porta-ferramentas é de 11°


Porta-ferramentas KGBF-F com diâmetro máximo de usinagem do inserto GBF

- A profundidade de canal de 3 mm está disponível para peças com diâmetro de até ø51mm
- A profundidade de canal de 2,7 mm está disponível para peças com diâmetro de até ø100mm
- \bullet A profundidade do canal de 2,5 mm ou menor está disponível em diâmetros de até ø200mm

A peça usinada interferirá no suporte com diâmetros de corte máximos ou maiores

Diâmetro de corte máximo

Usinagem com profundidade de canal de 3 mm

G

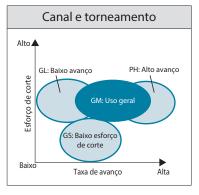
anal

Várias opções de insertos para porta-ferramenta KGD

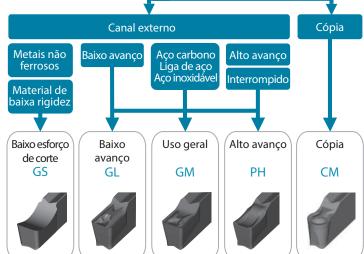
Controle do cavaco suave

» Novos quebra-cavacos projetados para cobrir uma grande variedade de materiais.

Preparação da aresta de alta precisão


» Tecnologia de moldagem de alta precisão com tolerância ±0,03 mm (para largura de aresta 2, 3, 4 mm)

Seleção do quebra-cavaco


A reconhecida tecnologia de revestimento MEGACOAT

» Longa vida útil da ferramenta e usinagem de alta eficiência obtidas pela resistência à oxidação e ao desgaste superiores.

Mapa de aplicação

Comparação do controle do cavaco (SCM415, Vc = 150 m/min, f = 0.15 mm/rev)

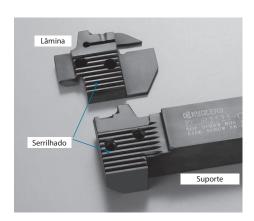
Controle do cavaco suave

Menos problemas de colisão do cavaco

Combinação do porta-ferramenta e inserto do tipo KGD (novo) e tipo KGM (convencional)

Porta-ferramenta de canal KGD

Disponíveis tipo integral e o tipo destacável (suporte + lâmina)

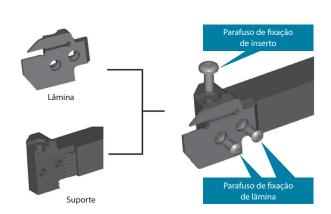


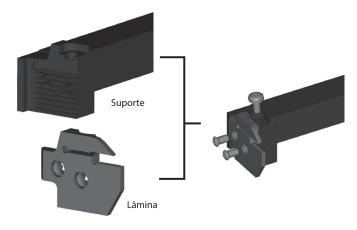
Porta-ferramentas do tipo destacável de alta rigidez

- Adaptável a várias aplicações por meio da troca de lâminas.
- Possibilita várias larguras de aresta e profundidades de corte por meio da mudança da combinação de Lâmina e suportes.
- Em caso de quebra da lâmina, basta substituí-la.

Porta-ferramentas para refrigeração de alta pressão

 Porta-ferramentas com passagem de refrigerante KGD-JCT com controle do cavaco superior e longa vida útil da ferramenta





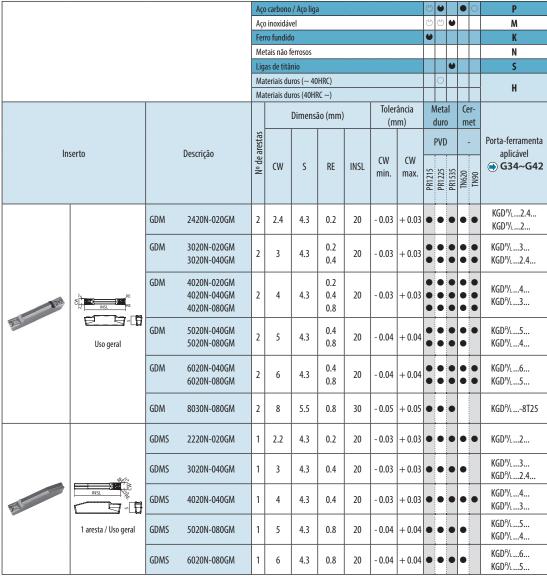
Estrutura da unidade do porta-ferramentas (suporte + lâmina)

KGD-S (tipo destacável 0°)

KGDS-S (tipo destacável 90°)

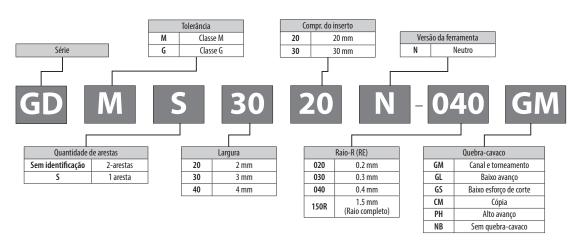
Observação para a combinação de suporte e lâmina do tipo destacável 0°

Suporte (KGD R L $^{\circ}$ C) + Lâmina (KGD R L $^{\circ}$ C)


Lâmina direita para suporte direito, lâmina esquerda para suporte esquerdo.

Observação para combinação de suporte e lâminas do tipo destacável 90°

Suporte (KGDS^R/LCCC-C) + Lâmina (KGD^L/_R-CTCC-C)


Lâmina esquerda para suporte direito, lâmina direita para suporte esquerdo.

GDM/GDMS/GDG

Condições de corte recomendadas 🔵 G44

Sistema de Identificação de Insertos

Externo

Interno

Face

GDM/GDMS/GDG

Inserto

Aço carbono / Aço liga

Aço inoxidável

Ferro fundido

Ligas de titânio

CW

Nº de arestas

2 2.5

2 3

2 3.5

2 4 4.3 0.4 20

2

2 6

2 8 5.5 0.4 30

2 2.4

2 3

2 4

2 6

5

5

Descrição

2520N-020GS

3020N-020GS

3520N-020GS

4020N-040GS

5020N-040GS

6020N-040GS

8030N-040GS

2420N-020GL

3020N-020GL

3020N-040GL

4020N-020GL

4020N-040GL

5020N-040GL

6020N-040GL

GDG

GDG

GDG

GDG

GDG

GDG

GDG

GDM

GDM

GDM

GDM

GDM

Baixo avanço

J ~[[]

Baixo esforço de corte

Metais não ferrosos

Materiais duros (~ 40HRC)

Materiais duros (40HRC ~)

Dimensão (mm)

RE INSL

0.2

0.2 20

20

S

4.3 0.2 20

4.3

4.3

4.3 0.4 20

4.3 0.4 20

4.3 0.2 20

4.3

4.3

4.3 0.4 20

4.3 0.4 20

0.2

0.4

0.2

0.4

20

20

.

• •

• •

•

•

Metal duro

PR1215 PR1235 GW15 TN620 TN90

.

.

.

....

+ 0.02

+ 0.02

+ 0.02

. . .

• • •

+ 0.03

+ 0.03

+ 0.04

+0.04

PVD

Tolerância

(mm)

CW

CW

min. max.

- 0.02 +0.02

- 0.02 +0.02

- 0.02 +0.02

- 0.02 +0.02

- 0.02

- 0.02

- 0.02

- 0.03

- 0.03

- 0.03 + 0.03

- 0.04

•

Cer-

met

M

N

S

Н

Porta-ferramenta

aplicável

→ G34~G42

KGD^P/L...2.4...

KGD^R/L...2... KGD^R/∟...3...

KGD^R/L...2.4... KGD^R/L...3...

KGD^R/∟...4...

KGD^R/L...3...

KGD^P/L...5...

KGD^R/L...4... KGD^R/L...6...

KGD^R/L...5...

KGD^R/∟...-8T25

KGD^R/L...2.4...

KGD^R/∟...2...

KGD^R/L...3...

KGD^R/L...2.4...

KGD^R/L...4...

KGD[®]/∟...3...

KGD^R/L...5...

KGD^R/L...4... KGD^R/L...6...

KGD^R/∟...5...

: Item standard

GDM/GDMS/GDG

				Aço	carbono	/ Aço liga					9	•		• 0	Р
				Aço	o inoxidáv	el					9	U	•		М
				Fer	ro fundid	0					•				K
				Me	tais não f	errosos									N
				Lig	as de titâ	nio							•		S
				Ma	teriais du	ros (~ 40	HRC)					0		\perp	н
				Ma	teriais du	ros (40HI	RC ~)								"
						Dimens	ão (mm)		Toler			1eta		Cer-	
						Difficilis	1 (111111)	1	(m	m)	C	duro)	met	
Inc	serto		Descrição	V° de arestas							ſ	PVD		-	Porta-ferramenta aplicável
	Serio		Descrição	N° de	CW	S	RE	INSL	CW min.	CW max.	PR1215	PR1225	PR1535	TN620	C24 C42
	10 66	GDM	2020N-020PH	2	2	4.3	0.2	20	- 0.03	+ 0.03	•	•	•		KGD™2
The second		GDM	3020N-030PH	2	3	4.3	0.3	20	- 0.03	+ 0.03	•	•	•		KGD [®] /∟3 KGD [®] /∟2.4
	Alto avanço	GDM	4020N-030PH	2	4	4.3	0.3	20	- 0.03	+ 0.03	•	•	•		KGD ^R /L4 KGD ^R /L3
		GDMS	2020N-020PH	1	2	4.3	0.2	20	- 0.03	+ 0.03	•	•	•		KGD ^R /∟2
	NA.	GDMS	3020N-030PH	1	3	4.3	0.3	20	- 0.03	+ 0.03	•	•	•		KGD ^P /∟3 KGD ^P /∟2.4
	1 aresta / Alto avanço	GDMS	4020N-030PH	1	4	4.3	0.3	20	- 0.03	+ 0.03	•	•	•		KGD ^P /∟4 KGD ^P /∟3
		GDM	3020N-150R-CM	2	3	4.3	1.5	20	- 0.03	+ 0.03	•	•	•	• •	KGD ^R /∟3 KGD ^R /∟2.4
10	₹ NSL	GDM	4020N-200R-CM	2	4	4.3	2	20	- 0.03	+ 0.03	•	•	•	• •	KGD ^R /∟4 KGD ^R /∟3
0	Raio completo	GDM	5020N-250R-CM	2	5	4.3	2.5	21	- 0.04	+ 0.04	•	•	•	• •	KGD ^P /∟5 KGD ^P /∟4
	difore do outros do	GDM	6020N-300R-CM	2	6	4.3	3	21	- 0.04		•	•	•	•	KGD™6 KGD™5

O GDM50/60-CM difere de outras descrições em comprimento (INSL) para evitar a interferência entre um porta-ferramentas e a peça usinada.

Condições de corte recomendadas 🏐 G44

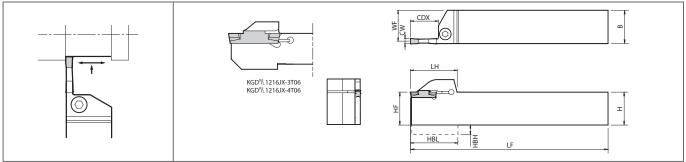
Externo

Interno

Face

G

anal


GDGS

				Aço carb	ono /	Aço liga										P
				Aço inox	idáve	I							П		П	М
Preparação de	e aresta de	corte		Ferro fur	ndido											K
Símbolo	Especi	ificação	Exemplo	Metais n	ão fe	rrosos							П		•	N
F	Aresta	a afiada F	Aresta afiada	Ligas de	titân	io									•	S
E	Hone	eado R E008	R0.08mm honeado	Materiai	s dur	os (~ 40H	IRC)								П	н
				Materiai	s dur	os (40HRC	[~)									н
				Aço sinte	erizad	0							П	•	П	
				aresta			Dim	ensão (r	nm)			ância ım)	СВ	N	PG	
	lns	serto	Descrição	aração da	No de arestas						- CIVI	- GW	PVD	-	-	Porta-ferramenta aplicável
			,	Tipo da preparação da aresta	N∘de	CW	S	RE	INSL	LE	CW min.	CW max.	KBN05M	KBN570	KPD001	⊕ G34~G42
			GDGS 2020N-020NB	E008	1	2	4.3	0.2	20	2.9	- 0.03	+ 0.03	•	•		KGD [₽] /∟2
		54 >	GDGS 3020N-040NB	E008	1	3	4.3	0.4	20	2.9	- 0.03	+ 0.03	•	•		KGD ^R /L3 KGD ^R /L2.4
		INSL E RE	GDGS 4020N-040NB	E008	1	4	4.3	0.4	20	2.9	- 0.03	+ 0.03	•	•		KGD ^R /∟4 KGD ^R /∟3
		1 aresta	GDGS 5020N-040NB	E008	1	5	4.3	0.4	20	2.9	- 0.03	+ 0.03	•	•		KGD [®] /∟5 KGD [®] /∟4
			GDGS 6020N-040NB	E008	1	6	4.3	0.4	20	2.9	- 0.03	+ 0.03	•			KGD [®] /∟6 KGD [®] /∟5
			GDGS 2020N-020NB	Ē	1	2	4.3	0.2	20	2.9	- 0.03	+ 0.03			•	KGD ^R /∟2
		× ×	GDGS 3020N-020NB	Ē	1	3	4.3	0.2	20	2.9	- 0.03	+ 0.03			•	KGD ^R /∟3 KGD ^R /∟2.4
		INSL E RE	GDGS 4020N-020NB	Ē	1	4	4.3	0.2	20	2.9	- 0.03	+ 0.03			•	KGD ^R /∟4 KGD ^R /∟3
•		1 aresta	GDGS 5020N-020NB	Ē	1	5	4.3	0.2	20	2.9	- 0.03	+ 0.03			•	KGD ^R /∟5 KGD ^R /∟4
			GDGS 6020N-020NB	F	1	6	4.3	0.2	20	2.9	- 0.03	+ 0.03			•	KGD ^R /∟6 KGD ^R /∟5

Condições de corte recomendadas 🌒 G44

Canal externo KGD

KGD (Canal externo)

Mostrado versão à direita

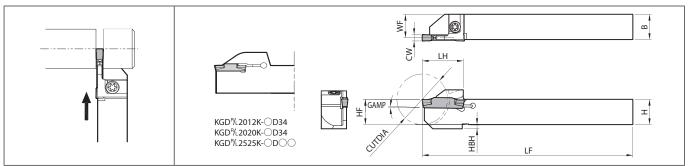
Dimensões do porta-ferramenta

	G	
_		

Cana

Externo Interno

Face


															Peças de	reposição			
	Descrição	Disp						Dime	nsão	(mm))				Parafuso de fixação	Parafuso	Chave	Chave	Insertos aplicáveis G30~G33
		R	L	CDX	Н	В	LH	HF	HBH	HBL	LF	WF	CW min.	CW max.					
KGD ^R /L	1616H-2T06	•	•	6			27.7			28									
	1616H-2T10	•	•	10	16	16	30.2	16	4	30.5	100	15.2							
	1616H-2T17	•	•	17			31.2			31.5									GD2020
	2012K-2T17	•	•	17		12	32.5					11.2			HH5X16				GD2220
	2020K-2T06	•	•	6	20		28	20			125		,	,			114/ 4		GD2420
	2020K-2T10	•	•	10	20	20	30.5	20			125	19.2	2	3		-	LW-4	-	GD2520
	2020K-2T17	•	•	17			32.5		-	-									GD3020
	2525M-2T06	•	•	6			28									1			
	2525M-2T10	•	•	10	25	25	30.5	25			150	24.2			HH5X25				
	2525M-2T17	•	•	17			32.5												
KGD ^R /L	2012K-2.4T17 2020K-2.4T17	•	•	17	20	12 20	32.5	20	-	-	125	11 19	2.4	3	HH5X16	-	LW-4	-	GD2420 , GD2520 GD3020
KGD ^R /L	1216JX-3T06	•	•		12		19.5	12	2	19	120				-	SE-50125TR	-	LTW-20	
	1616H-3T06	•	•	6			27.7			28									
	1616H-3T10	•	•	10	16	16	30.2	16	4	30.5	100	14.8							
	1616H-3T20	•	•				34.2			34.5									
	2012K-3T20	•	•	20		12	34.5					10.8			HH5X16				GD3020
	2020K-3T06	•	•	6			28						3	4					GD3520
	2020K-3T10	•	•	10	20	20	30.5	20			125	18.8				-	LW-4	-	GD4020
	2020K-3T20	•	•	20			34.5		-	-									
	2525M-3T06	•	•	6			28						1						
	2525M-3T10	•	•	10	25	25	30.5	25			150	23.8			HH5X25				
	2525M-3T20	•	•	20			35.5												
KGD ^R /L	1216JX-4T06	•	•	6	12	16	19.5	12	2	19	120	14.3			-	SE-50125TR	-	LTW-20	
	2020K-4T10	•	•	10	20	20	30.5	20			125	18.3			HH5X16				
	2020K-4T20	•	•	20	20	20	34.5	20			123	10.3	l	_	ппэхіб				GD4020
	2525M-4T10	•	•	10			30.5		-	-			4	5		-	LW-4	-	GD5020
	2525M-4T20	•	•	20	25	25	35.5	25			150	23.3			HH5X25				
	2525M-4T25	•	•	25			40.5												
KGD ^R /L	2020K-5T10	•	•	10	20	20	30.5	20			125	17.8			HH5X16				
	2020K-5T17	•	•	17	20		37.5	20			123	17.0							CD 5020
	2525M-5T10	•	•	10			30.5		-	-			5	6	HH5X25	-	LW-4	-	GD5020 GD6020
	2525M-5T17	•	•	17	25	25	37.5	25			150	22.8			וווואבט				db0020
	2525M-5T25	•	•	25			40.5												
KGD ^R /L	2525M-6T15	•	•	15	25	25	32.5 45.5	25	_	_	150	22.4	6	6	HH5X25	_	LW-4	_	GD6020
	2525M-6T30	•	•	30			45.5						Ľ	Ľ	IIIIJAZJ		LVV-**		αυυυ2υ
KGD ^R /L	2525M-8T25	•	•	25	25	25	43.3	25	7	44.2	150		8	8	HH6X25	_	LW-5	_	GD8030
	3232P-8T25	•	•		32	32	.5.5	32	-	-	170	29		Ľ	11110/125				GD0030

CDX : Profundidade máxima na qual o processamento pode ser realizado. (Caso o CDX seja de 20 mm ou mais, a profundidade máxima do canal feito pelo inserto de 2 arestas será de 18 mm.) Torque de aperto recomendado do parafuso de fixação : 6,5N·m (HH5X), 8,0N·m (HH6X25), 2,5N·m (SE-50125TR)

Os porta-ferramentas acima também são aplicáveis para corte.

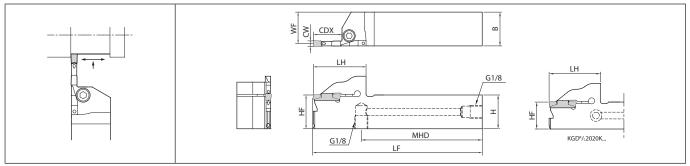
lacktriangle: Item standard

KGD (Canal externo)

Mostrado versão à direita

Dimensões do porta-ferramenta

																Pe	eças de reposiç	ão		
	Descrição		oni- dade				Dir	mens	ăo (m	nm)				Ângulo (°)	Parafuso de fixação	Parafuso	Parafuso	Chave	Chave	Insertos aplicáveis → G30~G33
		R	L	CUTDIA	Н	В	LH	HF	HBH	LF	WF	CW min.	CW max.	GAMP						G
KGD ^R /L	1010JX-2	•	•	20	10	10	18	10		120	9.2									
	1212F-2	•	•	24	12	12	19.5	12	2	85	11.2			1	_	SB-40120TR			LTW-15S	GD.,2020
	1212JX-2	•	•	24	12	12	19.5	12		120	111.2				-	3B-401201K		-	LI W-155	GD2220
	1616JX-2	•	•	32	16	16	24.5	16		120	15.2	2	3				-			GD2420
	2012K-2D34	•	•		20	12		20	_		11.2									GD2520
	2020K-2D34	•	•	34			32.5			125	19.2			0	HH5X16	-		LW-4	-	GD3020
	2525K-2D34	•	•		25	25		25			24.2									
KGD ^R /∟	1010JX-2.4	•	•	20	10	10	18	10		120	9									
	1212F-2.4	•	•	24	12	12	19.5	12	2	85	11			1	_	SB-40120TR		-	LTW-15S	
	1212JX-2.4	•	•							120										GD2420
	1616JX-2.4	•	•	32	16		24.5	16			15	2.4	3				-			GD2520
	2012K-2.4D34	•	•		20	12		20	_		11									GD3020
	2020K-2.4D34	•	•	34			32.5			125	19			0	HH5X16	-		LW-4	-	
	2525K-2.4D34	•	•		25	25		25			24									
KGD ^R /L	1212JX-3	•	•	24	12	12	19.5		2	120	10.8	3	3	1	-	SB-40120TR	-	-	LTW-15S	GD3020
KGD ^R /L	1616JX-3	•	•	32	16	16	24.5	16		120	14.8					SB-40120TR	-		LTW-15S	
	1616JX-3D38	•	•	38	10	42	29	10		425	44.0									
	1913K-3D38	•	•	42	19	13	21	19		125	11.8									GD3020
	2012JX-3D42	•	•	42		12	31 36	-	-		10.8	3	4	1	-		SE-50125TR	-	LTW-20	GD3520
	2012JX-3D51 2020JX-3D42	Ě	•	51 42	20	_	36	20		120						-				GD4020
		•	•	42		20	36	-			18.8									
	2020JX-3D51	•		51	25	25	_	25		125	22.0			0	HH5X16	-		LW-4		
	2525K-3D51	_			25	_25	41.5	25	L	125	23.8			U	ннэхтб		-	LVV-4	-	


0 inserto de 4 mm de largura não pode ser instalado em KGD $^{\rm P}\!\!/\!\! {\rm L}1212JX\text{-}3$

Torque de aperto recomendado do parafuso de fixação : 2,0N·m (SB-40120TR), 2,5N·m (SE-50125TR), 6,5N·m (HH5X16)

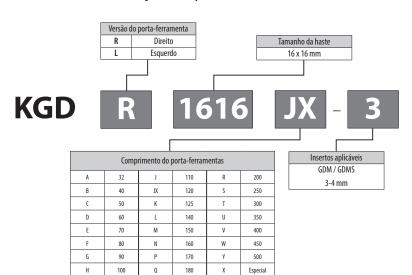
Ao usinar um material maior que ø36mm com porta-ferramentas KGD^R/L...-3D38, KGD^R/L...-3D42 e KGD^R/L...-3D51, use insertos de 1 aresta.

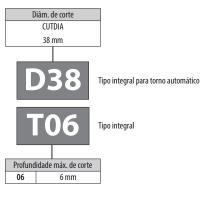
O diâmetro máximo de corte para insertos de 2 arestas é de ø36mm.

KGD-JCT (Canal externo, porta-ferramentas com passagem para refrigeração interna)

Mostrado versão à direita | Pressão máxima: ~15MPa

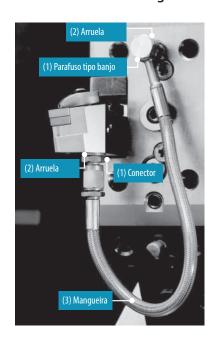
Dimensões do porta-ferramenta

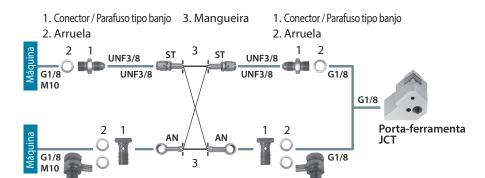




Externo Interno Face

															Pe	cas de reposiç	ão	
	Descrição	Disp	ooni- dade				Dii	mensi	ão (m	ım)				Furo de refrigeração	Parafuso de fixação	Bujão	Chave	Insertos aplicáveis (a) G30~G33
		R	L	XO	Н	В	LH	MHD	HF	LF	WF	CW min.	CW max.	Furo d				
KGD ^R /L	2020K-3T06JCT	•	•	6	20	20	31.5	96.2	20	125	18.8	3	4	Sim	HH5X16	HSG1/8X8.0	LW-4	
	2525K-3T06JCT	•	•	0	25	25	31.3	96.5	25	123	23.8	٥	4	SIIII	HH5X25	ח.סאס/וטכח	LVV-4	
KGD [®] /L	2020K-3T10JCT	•	•	10	20	20	34	94.2	20	125	18.8	3	4	Sim	HH5X16	HSG1/8X8.0	LW-4	GD3020 GD3520
	2525K-3T10JCT	•	•	10	25	25	34	94.5	25	123	23.8	٥	4	SIIII	HH5X25	ט.סאס/וטכח	LVV-4	GD4020
KGD ^R /L	2020K-3T20JCT	•	•	20	20	20	38	90.2	20	125	18.8	3	4	Sim	HH5X16	HSG1/8X8.0	LW-4	db.: 1020
	2525K-3T20JCT	•	•	20	25	25	39	89.5	25	123	23.8	٥	4	SIIII	HH5X25	ח.סאס/וטכח	LVV-4	
KGD ^R /L	2020K-4T10JCT	•	•	10	20	20	34	94.2	20	125	18.3	4	5	Sim	HH5X16	HSG1/8X8.0	LW-4	
	2525K-4T10JCT	•	•	10	25	25)4	94.5	25	123	23.3	4	٦	ווווכ	HH5X25	ט.6۸6/וטכח	LVV-4	CD 4030
KGD [®] /L	2020K-4T20JCT	•	•	20	20	20	38	90.2	20	125	18.3	4	5	Sim	HH5X16	HSG1/8X8.0	LW-4	GD4020 GD5020
	2525K-4T20JCT	•	•	20	25	25	39	89.5	25	125	23.3	4	٥	SIIII	HH5X25	ט.אא/וטכח	LVV-4	uυσ020
KGD ^P /L	2525K-4T25JCT	•	•	25	25	25	44	84.5	25	125	23.3	4	5	Sim	HH5X25	HSG1/8X8.0	LW-4	


Sistema de identificação do porta-ferramenta


Conexões da refrigeração

Fácil conexão com mangueira e conexão de alta pressão

- · Mesmo sem uma bomba de alta pressão, a refrigeração interna pode ser usada sob uma pressão normal
- · Parafuso do tipo banjo disponível para conexão de mangueira em ângulo Pode ser usado em uma variedade de máquinas

<Guia de instalação da mangueira>

Peças para conexão

Peças para conexão opcionais disponíveis

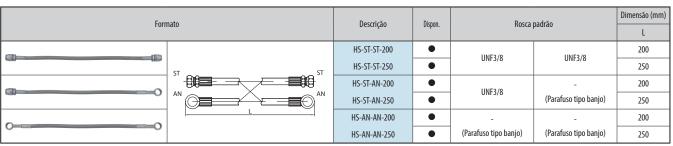
Escolha entre (1)(2)(3) com base nas especificações da máquina

1) Conector / Parafuso tipo banjo x 2 (2) Arruela x 2-4 (3) Mangueira x 1

(1) Conector / Parafuso tipo banjo

Pressão máxima: ~30MPa

	Formato	Descrição	Dispon.
0	010 015	WS-10	•


Pressão máxima: ~30MPa

Use 2 arruelas para um parafuso tipo banjo

(2) Arruela

For	mato	Descrição	Dispon.	Rosca padrão
101	illato	Descrição	vispoii.	Rosca de conexão da máquina
	UNF3/8 G1/8 (M10)	J-G1/8-UNF3/8	•	G1/8
	25 (29)	J-M10X1.5-UNF3/8	•	M10X1.5
Parafuso tipo banjo (para mangueira angular)	G1/8 (M10)	BB-G1/8	•	G1/8
	24.3	BB-M10X1.5	•	M10X1.5

(3) Mangueira Pressão máxima: ~30MPa

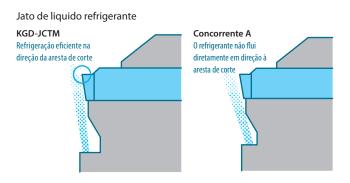
<u>Precauções</u>

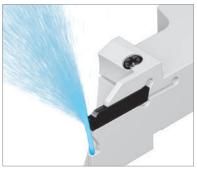
- 1. Certifique-se de que a porta da máquina esteja completamente fechada antes de usar essas peças.
- 2. Use uma vedação adequada para a rosca macho das peças da tubulação e certifique-se de que a conexão esteja firme. Use plugues tipo tampão para vedar os furos de refrigeração não utilizados.
- 3. Conecte e aperte firmemente a mangueira de refrigerante.
- 4. O uso de arruelas de cobre pode causar vazamento, mas não afetará o desempenho.
- 5. Peças de tubulação comerciais podem ser usadas se os padrões de rosca forem os mesmos. Verifique a resistência à pressão antes do uso.
- 6. Recomenda-se a troca regular do filtro do refrigerante.

KGD-JCTM (para torno automático)

Porta-ferramenta de corte para refrigeração em alta pressão para longa vida útil da ferramenta Posição otimizada do furo de refrigeração arrefece com eficácia a aresta de corte

- Posição otimizada do furo de refrigeração
- Jato de refrigerante na direção da face do flanco do inserto





Externo Interno

Face

Refrigeração eficaz da aresta de corte

Aplicável a diferentes tipos de conexão. Suporta refrigeração interna com/sem sistema de tubulação

Refrigeração interna sem tubulação

*Quando o posto da ferramenta suporta refrigeração direta

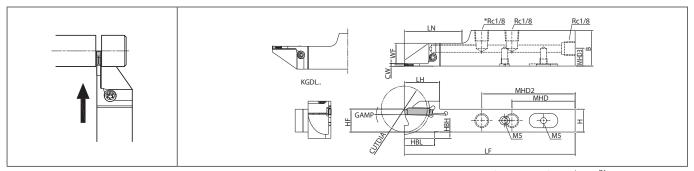
O líquido refrigerante é fornecido diretamente do posto de ferramentas para o suporte. Não há necessidade de tubulação, somente a instalação de ferramentas

Aplicável a uma ampla gama de máquinas

A conexão direta pelo posto da ferramenta depende da máquina. Entre em contato com nosso representante de vendas para maiores informações.

CITIZEN MACHINERY CO., LTD. (L20, D25, M32) STAR MICRONICS CO., LTD. (Série SB-R, Série SR, Série SV)

TSUGAMI CORPORATION (Tipo S205/206-II ☐ 16, Tipo S205A/206A-II ☐ 16)


Compatível com várias máquinas, incluindo as listadas acima. Os porta-ferramentas também podem ser customizados.

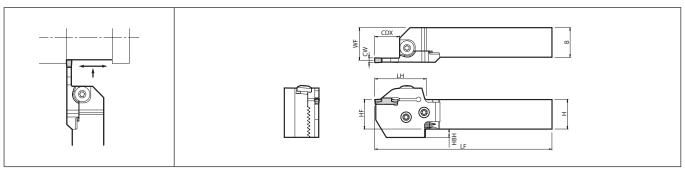
(Ordem aleatória Baseada em Pesquisa da KYOCERA em janeiro de 202

KGD-JCTM (Canal externo, porta-ferramentas com passagem para refrigeração interna)

Mostrado versão à direita | KGD^R/_L12-JCTM : 2-Rc1/8

Dimensões do porta-ferramenta

Descrição		Disp bilio								Dimei	nsão	(mm)							Ângulo (°)	e refrigeração	Insertos aplicáveis
		R	L	CUTDIA	Н	В	LH	MHD	MHD2	MHD3	HF	НВН	HBL	LF	N	WF	CW min.	CW max.	GAMP	Furo de 1	
KGDR 1218JX-2JCTM		•		24	12	18	19.5	ЕЛ	_	8.4	12	8.5	21		44	11.2					GD2020
KGDL 1218JX-2JCTM			•	24	12	10	19.5	34	_	7.7	12	0.5	21.5	120		11.2	2	3	1	Sim	GD2220 GD2420
KGDR 1625JX-2JCTM		•		32	16	25	24.5	44	65	12.2	16	4.5	21	120		15.2	۷)	'	ווווכ	GD2520
KGDL 1625JX-2JCTM			•	32	10	23	24.3	44	05	7.7	10	4.5	21		40	13.2					GD3020
KGDR 1218JX-2.4JCT	И	•		24	12	18	19.5	54		8.4	12	8.5	21		44	11					CD 2420
KGDL 1218JX-2.4JCT/	M		•	24	12	10	13.3	24	_	7.7	12	0.5	21.5	120		"	2.4	3	1	Sim	GD2420 GD2520
KGDR 1625JX-2.4JCT/	M	•		32	16	25	24.5	44	65	12.2	16	4.5	21	120	40	15	2.4	J	'	ווווכ	GD3020
KGDL 1625JX-2.4JCTN	M		•	32	10	23	24.3	44	UJ	7.7	10	4.5	21		40	13					35.13 320111
KGDR 1218JX-3JCTM		•		24	12	10	10.5	ЕЛ		8.6	12	8.5	21		44	10.0		3			
KGDL 1218JX-3JCTM			•	24	12	18	19.5	54	-	7.7	12	0.0	21.5	120		10.8	3	3	1	Sim	GD3020 GD3520
KGDR 1625JX-3JCTM		•		22	16	25	24.5	44	65	12.2	16	4.5	21	120		140	5	4	'	ווווכן	GD3520 GD4020
KGDL 1625JX-3JCTM			•	32	10	25	24.5	44	03	7.7	16	4.0	21		40	14.8		4			αυτυΣυ

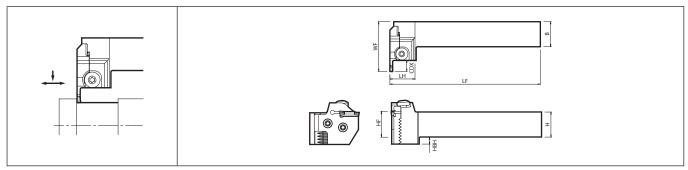

			Peças de	reposição	
	Descrição	Bujão	Bujão	Parafuso	Chave
KGDR	1218JX-2JCTM				
KGDL	1218JX-2JCTM	GP-1	HS5X4LP	SB-40120TR	LTW-15S
KGDR	1625JX-2JCTM	ur-i	ПЭЭХЧЕГ	3D-401201N	LI W-133
KGDL	1625JX-2JCTM				
KGDR	1218JX-2.4JCTM				
KGDL	1218JX-2.4JCTM	GP-1	HS5X4LP	SB-40120TR	LTW-15S
KGDR	1625JX-2.4JCTM	ui-i	HIJJAHLI	30-401201K	LI W-133
KGDL	1625JX-2.4JCTM				
KGDR	1218JX-3JCTM				
KGDL	1218JX-3JCTM	GP-1	HS5X4I P	SB-40120TR	LTW-15S
KGDR	1625JX-3JCTM	ui-1	1133/4LF	30-401201N	LI W-133
KGDL	1625JX-3JCTM				

Canal externo KGD

KGD-S (Canal externo / Tipo destacável 0°)

Mostrado versão à direita (lâmina direita e suporte direito)

Dimensões do porta-ferramentas (lâmina + suporte)


Externo Interno Face

		nm)			-	<u> </u>										_			Pe	ças de reposiç	ão
Ângulo da haste	-argura (mm)	Profundidade máx. de corte (mm)	Tamanho da haste (mm)	Descrição da unidade	111111111111111111111111111111111111111	nspollibilidade	Descrição da lâmina	Descrição do suporte				Din	nensä	io (m	m)				Parafuso de fixação (para inserto)	Parafuso de fixação (para lâmina)	Chave
Âng	Lar	Profundidade	Tamanh		R	L	(a) (d+3)	6 043	XOD	Н	В	LH	HF	HBH	LF	WF	CW min.	CW max.			
			□20	KGD™ 2020X-2T17S	•			KGD ^R /∟2020-C		20	20		20	\perp	122	-					
	2	17	<u> </u>	2525X-2T17S	•	•	KGD [™] L-2T17-C	KGD [®] /∟2525-C	17	25	25	40	25	7		28.4	2	3			
			□32	Sem descrição da unidade	\Rightarrow			KGD [®] /∟3232-C		32	32		32	-	167	35.4					
			□20	KGD™ 2020X-3T10S	•			KGD ^R /∟2020-C		20	20		20	12	115	23					
		10	<u>25</u>	2525X-3T10S	•		KGD ¹ / _L -3T10-C	KGD [®] /∟2525-C	10	25	25	33	25	7	140	28					
	3		□32	Sem descrição da unidade	\Rightarrow			KGD [®] /∟3232-C		32	32		32	-	160	35	3	4			
			□20	KGD ^R /∟ 2020X-3T20S	•	•		KGD ^R /∟2020-C		20	20		20	12	125	23		Ċ			
		20	<u>25</u>	2525X-3T20S	•	•	KGD [™] 3T20-C	KGD [®] /∟2525-C	20	25	25	43	25	7	150	28					
			□32	3232X-3T20S	•			KGD [®] /∟3232-C		32	32		32	-	170	35					
				KGD™ 2020X-4T10S	•			KGD [®] /∟2020-C		20	20		20		115						
		10	<u>25</u>	2525X-4T10S	•		KGD ^P /L-4T10-C	KGD [®] /∟2525-C	10	25	25	33	25	7		27.5					
0°			<u>32</u>	Sem descrição da unidade	\Rightarrow			KGD [®] /∟3232-C		32	32		32	-		34.5			BH6X10TR	SB-60120TR	LTW-25
			<u> </u>	KGD ^R /∟ 2020X-4T20S	•			KGD ^R /∟2020-C		20	20		20	$\overline{}$	125				DIIOXIOIII	3D 00120111	LI W 23
	4	20	<u>25</u>	2525X-4T20S	•	•	KGD ^P /L-4T20-C	KGD [®] /∟2525-C	20	25	25	43	25	7		27.5	4	5			
			□32	3232X-4T20S	•			KGD [®] /∟3232-C		32	32		32	-	_	34.5					
				KGD ^R /∟ 2020X-4T25S	•	•		KGD ^R /∟2020-C		20	20		20			22.5					
		25	<u>25</u>	2525X-4T25S	•	•	KGD [®] /∟-4T25-C	KGD [®] /∟2525-C	25	25	25	48	25	\Box	155						
			<u>32</u>	3232X-4T25S	•			KGD [®] /∟3232-C		32	32		32	-	175	-					
				KGD™ 2020X-5T10S	•	•		KGD ^R /∟2020-C		20	20		20		115	22					
		10	<u>25</u>	2525X-5T10S	•		KGD [®] / _L -5T10-C	KGD [®] /∟2525-C	10	25	25	33	25	7	140	27					
	5		<u>32</u>	Sem descrição da unidade				KGD [®] /∟3232-C		32	32		32	-	160	34	5	6			
			□20	Sem descrição da unidade	\Rightarrow			KGD ^R / _L 2020-C		20	20		20		130	22	-	-			
		25			•	•	KGD [™] -5T25-C	KGD [®] /∟2525-C	25	25	25	48	25		155	27					
			□32	3232X-5T25S	•			KGD [®] /∟3232-C		32	32		32	-	175	34					

- 1. Ao usar o porta-ferramenta na posição de montagem normal, a mandíbula inferior do porta-ferramentas pode interferir no presetter de ferramentas. Insertos aplicáveis 🏟 G30~G33
- 2. As descrições do suporte e da lâmina estão impressas no corpo do porta-ferramenta. (A descrição da unidade não é impressa.)
 - ${\it KGD-S: L\^amina\ direita\ para\ suporte\ direito, l\^amina\ esquerda\ para\ suporte\ esquerdo.}$
 - O suporte é aplicável a todas as lâminas com sentido correspondente.
- 3. Quando a descrição da unidade não estiver disponível (sem descrição da unidade) e/ou o status do estoque for "-", adquira o suporte e a lâmina separadamente.
- 4. CDX: Profundidade máxima na qual o processamento pode ser realizado. (Caso o CDX seja de 20 mm ou mais, a profundidade máxima do canal feito pelo inserto de 2 arestas será de 18 mm.)

 Os porta-ferramentas acima também são aplicáveis para corte.

KGDS-S (Canal externo / Tipo destacável 90°)

Mostrado versão à direita (lâmina esquerda e suporte direito)

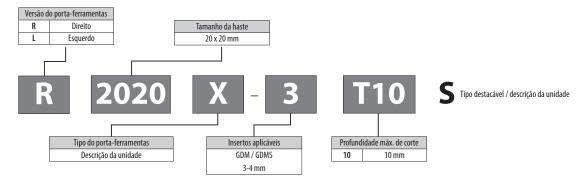
Dimensões do porta-ferramentas (lâmina + suporte)

		nm)					9	עַ										Po	eças de reposiç	ão
Ângulo da haste	.argura (mm)	Profundidade máx. de corte (mm)	Tamanho da haste (mm)	Descrição da lâmina	Descrição do suporte	Descrição da unidade	Obchilidiadail	Disponiuda				Dir	nensâ	io (m	m)			Parafuso de fixação (para inserto)	Parafuso de fixação (para lâmina)	Chave
Âng	Lar	Profundidade	Tamanh	⊕ G43	• 043		R	L	XO	Н	В	LH	HF	НВН	LF V	IF IS	CW IIIII.			
	2	17	□20	KGD ^L /R-2T17-C	KGDS [®] /∟2020-C	-			17	20	20		20	12	125	5.7 2	, ;			
		17	□25	NUD /K-2117-C	KGDS [®] /∟2525-C	-			17	25	25		25	7	150)./	-	'		
		10	□20	KGD ^L /R-3T10-C	KGDS [®] /∟2020-C	KGDS ^R /∟ 2020X-3T10S	•	•	10	20	20		20	12	125	7				
	3	10	□25	ארטווט-כ	KGDS [®] /∟2525-C	2525X-3T10S	•	•	10	25	25		25	7	150	<u>.</u>	3 4			
	,	20	□20	KGD ^L /R-3T20-C	KGDS [®] /∟2020-C	-			20	20	20		20	12	125		, ,	'		
		20	□25	NGD /N-3120-C	KGDS [®] /∟2525-C	-			20	25	25		25	7	150	.,				
		10	□20	KGD ^L /R-4T10-C	KGDS [®] /∟2020-C	-			10	20	20		20	12	125	7				
90°		10	<u>25</u>	NGD / HTTO C	KGDS [®] 2525-C	-			10	25	25	27.7	25	7	150			BH6X10TR	SB-60120TR	LTW-25
	4	20	<u>20</u>	KGD ^L /R-4T20-C	KGDS [®] /∟2020-C	-			20	20	20	2,.,	20	12	125	0.7	ا 1		30 00120111	LIW 25
	'		<u>25</u>	NGD / 1120 C	KGDS [®] /∟2525-C	-				25	25		25	7	150		' ⁻			
		25	□20	KGD ^L /R-4T25-C	KGDS [®] /∟2020-C	-			25	20	20		20	12	125	. 7				
			□25	NGD /** 4125 C	KGDS [®] /∟2525-C	-				25	25		25	7	150	.,				
		10	□20	KGD ^L /R-5T10-C	KGDS [®] /∟2020-C	-			10	20	20		20	12	125	0.7				
	5		□25	NGD / 3110 C	KGDS [®] /∟2525-C	-				25	25		25	7	150		5 6			
		25	□20	KGD ^L /R-5T25-C	KGDS [®] /∟2020-C	-			25	20	20		20	12	125	"	´ `	´		
		23	□25	NGD /N-3123-C	KGDS [®]	-			23	25	25		25	7	150	.,				

1. Ao usar o porta-ferramenta na posição de montagem normal, a mandíbula inferior do porta-ferramentas pode interferir no presetter de ferramentas.

Insertos aplicáveis
G30~G33

2. Descrições do suporte e da lâmina estão impressas no corpo do porta-ferramenta. (A descrição da unidade não é impressa.)


KGDS-5: Lâmina esquerda para suporte direito, lâmina direita para suporte esquerdo.

O suporte é aplicável a todas as lâminas com sentido correspondente.

3. CDX: Profundidade máxima na qual o processamento pode ser realizado. (Caso o CDX seja de 20 mm ou mais, a profundidade máxima do canal feito pelo inserto de 2 arestas será de 18 mm.)

Sistema de identificação do porta-ferramenta

Dimensões do porta-ferramenta (lâmina e suporte)

KGD-C (Tipo destacável 0°)

Formato do tipo 0° Mostrado versão à direita	Descrição do suporte	Disponi-	bilidade		nensi (mm)	
mostrado versão à aneita	заротс	R	L	L	В	Н
	KGD ⁿ /∟ 2020-C	•	•	104	20	20
	2525-C	•	•	129	25	25
L	3232-C	•	•	149	32	32

G

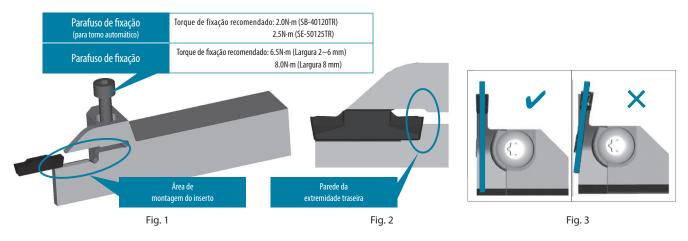
KGDS-C (Tipo destacável 90°)

Canal

Externo Interno Face

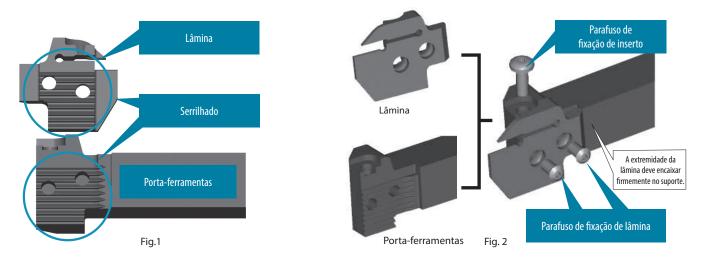
-							
Formato do tipo 90°		crição do uporte	Disponi-	bilidade		nensi (mm)	
			R	L	L	В	Н
	KGDS ^R /L	2020-C	•	•	122	20	20
L		2525-C	•	•	147	25	25

Lâmina

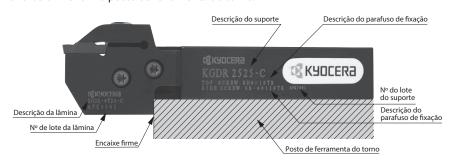

Lamma						
Formato da lâmina Mostrado versão à direita	Descrição da lâmina	Disponi-	bilidade		nensĉ (mm)	
mostrado versão à anerta		R	L	L	T	Α
	KGD [₽] /∟ -2T17-C	•	•	51.2	17.2	1.7
4 T	-3T10-C	•	•	44.2	10.2	2.4
	-3T20-C	•	•	53.2	20.2	2.4
	-4T10-C	•	•	44.2	10.2	
15 CO O 15 CO	-4T20-C	•	•	54.2	20.2	3.4
	-4T25-C	•	•	59.2	25.2	
	-5T10-C	•	•	44.2	10.2	4.4
	-5T25-C	•	•	59.2	25.2	7.4

Peças de reposição

	F	eças de reposiçã	0
Descrição da	Parafuso de fixação (para inserto)	Parafuso de fixação (para lâmina)	Chave
unidade			
KGD™LS KGDS™LS	BH6X10TR	SB-60120TR	LTW-25


Instalação do inserto

- 1. Use ar comprimido ou outras medidas para remover cavacos da área de montagem do inserto (Consulte a Fig. 1).
- 2. Posicione o inserto no porta-ferramentas e empurre-o para fazer contato com a extremidade posterior da superfície do porta-ferramentas (Consulte as Fig. 1 e 2).
- 3. Mantenha o inserto pressionado contra a parede do porta-ferramenta, aperte o parafuso de fixação do inserto com o torque apropriado.
- 4. Certifique-se de que não haja folga entre o inserto e a extremidade posterior da superfície do porta-ferramentas e que o inserto esteja ajustado reto. (Consulte as Fig. 2 e 3).


Instalação da lâmina (porta-ferramentas do tipo destacável)

- 1. Use ar comprimido ou outras medidas para remover cavacos e poeira da parte serrilhada (Consulte a Fig. 1).
- 2. Encaixe e fixe as partes serrilhadas da lâmina e do suporte, e também fixe a extremidade da lâmina no suporte. (Consulte a Fig. 2)
- 3. Aperte os parafusos de fixação da lâmina com o torque apropriado. Você pode apertá-los em qualquer ordem. (Consulte a Fig. 2) (Torque de aperto recomendado: 8N·m)
- 4. Instale o inserto após instalar a lâmina.

Sistema de identificação do porta-ferramenta do tipo destacável e instalação no torno

Instale firmemente a mandíbula inferior no posto de ferramenta do torno.

G

Externo

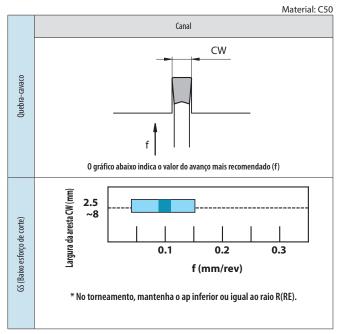
Interno

Face

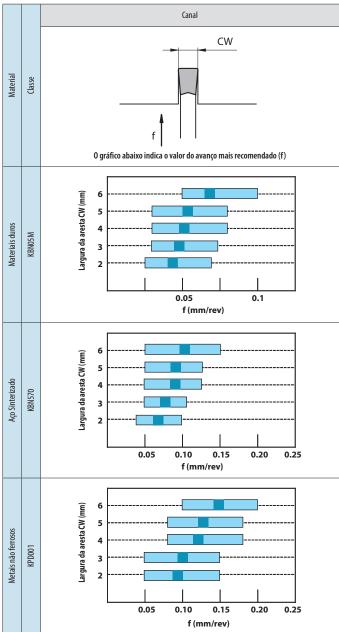
Condições de corte recomendadas (velocidade de corte Vc)

					Classes Recomend	ladas (Velocidade de	e Corte Vc : m/min)				es
Material usinado	Quebra-cavaco	Cer	met	MEGACOAT NANO	MEGA	ACOAT	Metal duro	MEGACOAT CBN	CBN	PCD	Observações
		TN620	TN90	PR1535	PR1225	PR1215	GW15	KBN05M	KBN570	KPD001	g
Aço carbono	GM	☆ 80~220	☆ 100~220	☆ 80~200	★ 80~200	☆ 100~200	-	-	-	-	
Aço liga	GL CM	☆ 70~200	☆ 80~200	☆ 70~180	★ 70~180	☆ 80~180	-	-	-	-	
Aço inoxidável	PH	-	-	★ 60~150	☆ 60~150	☆ 60~150	-	-	-	-	
Ferro fundido	GS	-	-	-	-	★ 100~200	-	-	-	-	refrig.
Ligas de Alumínio	GS	-	-	-	-	-	☆ 200~500	-	-	★ 150~2,000	Comr
Latão	NB	-	-	-	-	-	☆ 100~200	-	-	★ 200~800	
Materiais duros	NB	-	-	-	-	-	-	★ 80~150	-	-	
Aço Sinterizado	1 INB	-	-	-	-	-	-	-	★ 100~250	-	

★:1ª Recomendação ☆:2ª Recomendação

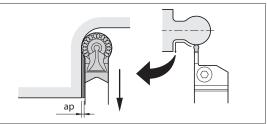

Condições de corte recomendadas (taxa de avanço / ap)

Material: C50 Canal Torneamento CW CW Quebra-cavaco f O gráfico abaixo indica o valor do avanço mais recomendado (f) CW=8mm 8 Largura da aresta CW (mm) 4.0 5~6 3.0 ap (mm) GM (Uso geral) 3~4 CW=4mm CW=3mm CW<3mm 2.0 1.0 0.1 0.2 0.3 0.3 0.1 0.2 0.4 f (mm/rev) f (mm/rev) 4.0 Largura da aresta CW (mm) CW=6n 3.0 ap (mm) CW=5mm GL (Baixo avanço) CW=4mi 2.0 2.4 1.0 0.1 0.2 0.3 0.2 0.4 0.1 f (mm/rev) f (mm/rev) Largura da aresta CW (mm) * Largura de 2 mm não é recomendada PH (Alto avanço) ap (mm) 1.0 2 0.2 0.3 0.4 0.1 f (mm/rev) 0.1 0.3 0.2 f (mm/rev) Largura da aresta CW (mm) 3.0 ap (mm) CW=4mm 2.0 CM (Cópia) 0.1 0.2 0.3 0.1 0.2 0.3 0.4 0.5 f (mm/rev) f (mm/rev)


Nota 1. Os valores acima são baseados na condição em que o CDX do porta-ferramentas seja de 17 mm ou menos.

2. Caso o porta-ferramenta não seja para o inserto com 8 mm de largura e sua dimensão CDX seja maior que 17 mm, defina os valores para torneamento em 90% ou menos desses valores acima.

Condições de corte recomendadas (taxa de avanço / ap)


Observação) 1. Os valores acima são baseados na condição em que o CDX do porta-ferramenta

Quebra-cavacos CM [na cópia reversa]

ap máx. na cópia reversa

				ap máx. (mm)		
	Descrição		Descri	ção do porta-ferra	menta	
		KGD2T	KGD3T	KGD4T	KGD5T	KGD6T
GDM	3020N-150R-CM	0.24	0.20	-	-	-
	4020N-200R-CM	-	0.24	0.20	-	-
	5020N-250R-CM	-	-	0.30	0.20	-
	6020N-300R-CM	-	-	-	0.30	0.25

Guia para canal externo

Ponto 1 (Torneamento após canal)

1. Profundidade de canal 0,5mm ou maior: Para desbaste - Consulte a Fig. 1

Antes do torneamento, recue a ferramenta cerca de 0,1 mm após o canal em vez de tornear subsequentemente após o mergulho. Deixar de recuar a ferramenta antes da usinagem transversal resultará em uma carga desequilibrada aplicada em apenas um lado da aresta de corte.

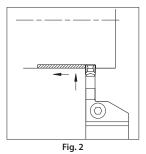
2. Profundidade de canal menor que 0,5mm : Para acabamento - Consulte a Fig. 2

Torneamento subsequente ao canal é possível porque a profundidade do canal raso corresponde a uma carga reduzida na aresta de corte.

Não é necessária a interrupção do movimento.

Ponto 2

Externo


Interno

Face

- 1. Para aumentar a largura do canal (consulte a Fig. 3), aplique o "Torneamento em Degraus".
- 2. O canal e as paredes laterais alargados devem ser acabados por último. Para melhor controle do cavaco, recomenda-se um ap de 0,5mm ou mais. Observação: Se a peça não estiver apoiada no centro, reduza a taxa de avanço ao fazer o canal em direção ao centro.

Antes do torneamento, recue a ferramenta cerca de 0,1 mm após o canal. Profundidade de canal de 0,5 mm ou maior no desbaste

Torneamento subsequente ao canal. Profundidade de canal menor que 0,5 mm no acabamento

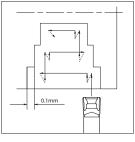
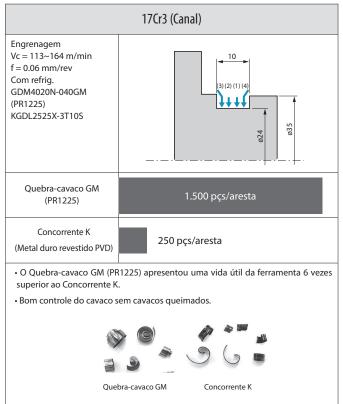
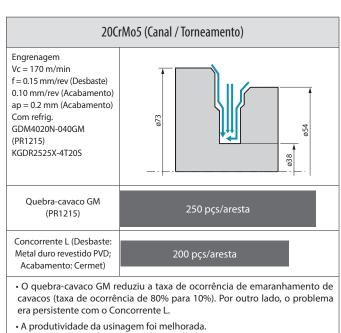




Fig. 3

Estudos de caso

Quebra-cavaco GM (Acabamento) Controle do cavaco suave

Avaliação do usuário

Avaliação do usuário

Concorrente L (Acabamento)

				Aço	carbono	/ Aço liga	3						<u>ල</u>	u		P
				Aço	inoxidáv	rel .							•	9		М
				Fer	ro fundid	0						•		•		K
				Me	tais não f	errosos								•		N
				Lig	as de titâ	nio								•		S
				-		ros (~ 40						Ц	0	•	\perp	- н
				Ma	teriais du	ros (40HF	?C ~)					Ш		\perp		
						Dimens	ão (mm)			ância m)		Met	al dı	ıro	Cormot	Porta-ferramenta
ln.	corto		Docericão	No de arestas							8	F	VD		- -	aplicável G55~G58
111	serto		Descrição	N° de	CW	S	RE	INSL	CW min.	CW max.	CR9025	PR905	PR915	PR930	TN90	G05
		GMM	2420-020MW	2	2.4	4.3	0.2	20	- 0.05	+ 0.05	0	0				KGM2.5() KGM2()
		GMM	3020-020MW 3020-040MW	2	3	4.3	0.2 0.4	20	- 0.05	+ 0.05	0	- 4	0			, ,
	GMM2420-02	GMM	4020-020MW 4020-040MW 4020-080MW	2	4	4.3	0.2 0.4 0.8	20	- 0.05	+ 0.05	0	0 0 0	0			1 K(₃ M 3() 1
	Orientado a controle do cavaco / Classe M	GMM	5020-040MW 5020-080MW	2	5	4.3	0.4 0.8	20	- 0.05	+ 0.05	0	0	0			, ,
	curaco, classe m	GMM	6020-040MW 6020-080MW	2	6	4.3	0.4 0.8	20	- 0.05	+ 0.05	0	0	0			KGMR6T30 KGM5()
		GMM	8030-080MW	2	8	5.5	0.8	30	- 0.05	+ 0.05	0	0	0			KGM ^R /L 2525M-8 KIGM6540B-8 KFMS8
	n t å. RE	GMM	3020-020MS 3020-040MS	2	3	4.3	0.2 0.4	20	- 0.05	+ 0.05	0		0			, ,
	SO TO INSL	GMM	4020-040MS	2	4	4.3	0.4	20	- 0.05	+ 0.05	0		0			KGM4() KGM3()
	Orientado a corte afiado / Classe M	GMM	5020-040MS	2	5	4.3	0.4	20	- 0.05	+ 0.05	0		0			KGM5() KGM4()
	/ clusse iii	GMM	6020-040MS	2	6	4.3	0.4	20	- 0.05	+ 0.05						KGMR6T30 KGM5()
		GMG	3020-000MS 3020-020MS 3020-040MS	2	3	4.3	0 0.2 0.4	20	- 0.02	+ 0.02	0		0			1 K(₃ M 2() 1
	RE NINSL	GMG	4020-020MS 4020-040MS 4020-080MS	2	4	4.3	0.2 0.4 0.8	20	- 0.02	+ 0.02	0					KGM4() KGM3()
	Orientado a corte afiado / Classe de precisão	GMG	5020-040MS 5020-080MS	2	5	4.3	0.4 0.8	20	- 0.02	+ 0.02						KGM5() KGM4()
		GMG	6020-080MS	2	6	4.3	0.8	20	- 0.02	+ 0.02						KGMR6T30 KGM5()

Condições de corte recomendadas
Gamma Gam

Externo Interno

Face

G

anal

GM/GMN/GMM/GMG/GMGA/FGG

				Açı	carbono	/ Aço liga	 1						5	u			P
				Açı	inoxidáv	el						•	•	9			М
				Fer	ro fundid	0						•	I		5		K
				Ме	tais não f	errosos								_	•		N
					as de titâ								4	-			S
				-	teriais du									•	+	4	н
				IVId	teriais du	105 (40П	(C ~)		Toler	ância		_	_	_		et	
						Dimens	ão (mm)			m)		Meta	l dı	uro		Cermet	
				stas							CVD	P۱	/D		_	_	Porta-ferramenta
In	serto		Descrição	Nº de arestas					CW	CW		-	-	+	+	_	aplicável
				ŝ	CW	S	RE	INSL	min.	max.	125	05	2	စ္ကါ	2	0	● G55~G60
											CR9025	PR905	3		N N	MIN N	
	I												-	+	+	+	
		GMG	2520-030MG	2	2.5	4.3	0.3	20	- 0.03	+ 0.03							KGM2.5() KGM2()
														+	+	+	KGM3()
		GMG	3020-030MG	2	3	4.3	0.3	20	- 0.03	+ 0.03		0 (KGM2()
				Н										+		\dagger	
	m / Å	GMG	3520-030MG	2	3.5	4.3	0.3	20	- 0.03	+ 0.03		0	ľ				KGM3()
	\$ 100 mm	CMC	4020 040146	,	4	4.2	0.4	20	0.03	. 0.03							KGM4()
	15 INSL	GMG	4020-040MG	2	4	4.3	0.4	20	- 0.03	+ 0.03		0	ľ				KGM3()
	Orientado a corte afiado /	GMG	5020-040MG	2	5	4.3	0.4	20	- 0.03	+ 0.03		0					KGM5()
	Classe de precisão (quebra-cavaco moldado)		3020 040Md			1.5	0.1	20	0.03	1 0.03					1	1	KGM4()
	(questa caracomoladas)	GMG	6020-040MG	2	6	4.3	0.4	20	- 0.03	+ 0.03		0					KGMR6T30
													_	4	+	4	KGM5()
		GMG	0020 050MC	,	۰	5.5	0.5	20	0.02	. 0.03							KGM ^R /L 2525M-8
		GIVIG	8030-050MG	2	8	5.5	0.5	30	- 0.03	+ 0.03		0					KIGM6540B-8 KFMS8
														+	+	\dagger	KGM3()
		GMM	3020-150R	2	3	4.3	1.5	20	- 0.05	+ 0.05	0	0 (KGM2()
	RE RE	61111															KGM4()
	INSL	GMM	4020-200R	2	4	4.3	2	20	- 0.05	+ 0.05	0	0 (KGM3()
4		GMM	E020 2E0D	2	r.	4.3	2.5	20	- 0.05	. 0.05		0					KGM5()
	Orientado a controle do cavaco / Classe M / Raio	GIVIIVI	5020-250R		5	4.3	2.5	20	- 0.03	+ 0.05							KGM4()
	completo	GMM	6020-300R	2	6	4.3	3	20	- 0.05	+ 0.05	0	0					KGMR6T30
				Ē			_						_		1	_	KGM5()
	S/°	GMG	3020-150R	2	3	4.3	1.5	20	- 0.02	+ 0.02	0						KGM3()
3	S C PAINT												+	+	+	+	KGM2()
		GMG	4020-200R	2	4	4.3	2	20	- 0.02	+ 0.02	0						KGM4() KGM3()
	Raio completo /													+	+	+	KGM5()
	Orientado a corte afiado / Classe de precisão	GMG	5020-250R	2	5	4.3	2.5	20	- 0.02	+ 0.02							KGM4()
														1		1	KGM3()
	RE RE	GMG	3020-150RU	2	3	4.3	1.5	20	- 0.02	+ 0.02	0						KGM2()
1	NSL INSL																KGMUR2525M
																T	KGM4()
	Orientado a controle do cavaco / Rebaixamento	GMG	4020-200RU	2	4	4.3	2	20	- 0.02	+ 0.02							KGM3()
	cavaco / nebaixamento																KGMUR2525M

Condições de corte recomendadas
 G143

				Acc	carbono	/ Aco lias						4			Р
					inoxidáv		1					(4)			M
				,	ro fundid								(ع)		K
				_	tais não f								•		N
					as de titâ								U		S
				Ma	teriais du	ros (~ 40	HRC)					•			
				Ma	teriais du	ros (40HF	RC ~)								Н
						Dimensa	ão (mm)			ância		1eta		Cermet	
				۷.				1	(m	im)		dure)	G	Porta-ferramenta
				No de arestas							CND	PVD	-	-	aplicável
ln:	serto		Descrição	de aı	CW		0.5	INICI	CW	CW					● G56~G58
				ŝ	CW	S	RE	INSL	min.	max.	CR9025	930	KW10	06	G95
											R	æ	Υ	⊨	
	INSL														VCMR/ F
		GMGA	6020-300R	2	6	4.3	3	20	- 0.02	+ 0.02			0		KGM ^P /∟5 KGM ^P /∟5T
	Raio completo /														NGW 7251
	Orientado a corte afiado / Classe de precisão														
	classe de precisao												Н		
															VCMB/ 2525M 0
	INSL														KGM ^R /L2525M-8 KIGM ^R /L6540B-8
		GMGA	8030-400R	2	8	5.5	4	30	- 0.02	+ 0.02			0		KIGMUR6540B-8
	Raio completo / Orientado a corte afiado /														KFMS8
	Orientado a corte afiado / Classe de precisão														
	-														
	S 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0														
	` <u> </u>	CMM	2014.04	2	3	4.3	0.4	14	0.05						
	ED : [1]	GMM	3014-04	2	3	4.3	0.4	14	- 0.05	+ 0.05		0		0	-
	Orientado a controle do														
	cavaco / Classe M														
	RE RE														
-															
	INSL OF THE	GMM	3014-15R	2	3	4.3	1.5	14	- 0.05	+ 0.05				0	_
9	'	Gillin	3011 1311	-		1.5	1.5		0.03	1 0.03)	
	Orientado a controle do cavaco / Classe M / Raio														
	completo											L			
	RE RE	FGGR	3020-02	2	3	4.3	0.2	20	- 0.02	+ 0.02	0	0	0		
	O Transis	FGGL	3020-02	\vdash							0	0	0	H	VCMMD2525M 2
		FGGR FGGL	4020-04 4020-04	2	4	4.3	0.4	20	- 0.02	+ 0.02	0	0	00		KGMMR2525M-3 KGMSR2525M-3
	Orientado a controle	FGGR	5020-04										0		NGIVIJILZJZJIVI-J
	do cavaco / Classe de precisão	FGGL	5020-04	2	5	4.3	0.4	20	- 0.02	+ 0.02	0		0		

Inserto com sentido direito

Externo

Interno Face

Condições de corte recomendadas
 G143

				Aço	carbono	/ Aço liga	ì						0			Р
				_	inoxidáv							Н.	•	9		M
					ro fundid							•	4	•		K
					tais não f									•	\vdash	N
					as de titâ								4	4		S
				-	teriais du						L				╄	н
		1		Ma	teriais du	ros (40HF	?C ~)					Ш	1		+	
						Dimens	ão (mm))		ância m)		Meta	l du	iro	Cermet	
In	serto		Descrição	N° de arestas							S	P۱	/D	-	-	Porta-ferramenta aplicável
			•	N° de	CW	S	RE	INSL	CW min.	cw max.	CR9025	PR905	rrylo	PK930 KW10	06NL	⊕ G55~G58
		GMM	1520-MT	2	1.5	4.3	0 0.05	20	- 0.05	+ 0.05		()) C		KGM1.5()
	SO NO INSL RE	GMM	2020-MT	2	2	4.3	0 0.05	20	- 0.05	+ 0.05	0	()			KGM2() KGM1.5()
21	Orientado a corte afiado	GMM	2520-MT	2	2.5	4.3	0 0.05	20	- 0.05	+ 0.05		()) C		KGM2.5() KGM2()
	STICITION OF COLLEGING OF	GMM	3020-MT	2	3	4.3	0 0.05	20	- 0.05	+ 0.05	0	()) C		KGM3() KGM2()
		GMM	1520-NB	2	1.5	4.3	0	20	- 0.05	+ 0.05) C		KGM1.5()
	RE RE	GMM	2020-NB	2	2	4.3	0	20	- 0.05	+ 0.05						KGM2() KGM1.5()
	Orientado a corte afiado /	GMM	2520-NB	2	2.5	4.3	0	20	- 0.05	+ 0.05			(KGM2.5() KGM2()
	Sem quebra-cavaco	GMM	3020-NB	2	3	4.3	0	20	- 0.05	+ 0.05				C		KGM3() KGM2()
	SO OF TO THE RE	GMM	2020-TK	2	2	4.3	0.2	20	- 0.05	+ 0.05		() () C		KGM2() KGM1.5()
25	NSL RE	GMM	2520-TK	2	2.5	4.3	0.2	20	- 0.05	+ 0.05		() () C		KGM2.5() KGM2()
	Orientado a estabilidade	GMM	3020-TK	2	3	4.3	0.25	20	- 0.05	+ 0.05	0	() (KGM3() KGM2()
	SAI SAI	GMN	2-TK	1	2	4.3	0.2	20	- 0.05	+ 0.05		() () c		KGM2() KGM1.5()
25	INSL RE	GMN	3-TK	1	3	4.3	0.25	20	- 0.05	+ 0.05	0	() (KGM3() KGM2()
	1 aresta / Orientado a estabilidade	GMN	4-TK	1	4	4.3	0.3	20	- 0.05	+ 0.05	0	() (KGM4() KGM3()
		GMN	2.2	1	2.2	4.3	0.17	20	- 0.05	+ 0.05	0				0	KGM2()
	GMN2.2	GMN	3	1	3	4.3	0.2	20	- 0.05	+ 0.05	0) c	0	KGM3() KGM2()
	INSL S	GMN	4	1	4	4.3	0.25	20	- 0.05	+ 0.05	0				0	KGM3()
	1 aresta	GMN	5	1	5	4.3	0.8	20	- 0.05	+ 0.05	0					KGM5() KGM4()
		GMN	6	1	6	4.3	0.8	20	- 0.05	+ 0.05	0					KGMR6T30 KGM5()

Inserto com sentido direito

				Açı	carbono	/ Aço lig	a							9	•			Р
				Açı	o inoxidáv	rel							П	•	4			М
				Fer	ro fundid	0							•			9		K
				Ме	tais não f	errosos		,		,						•		N
				Lig	as de titâ	nio									_	•		S
				-	teriais du							L	Ш	0	•	4	_	н
				Ma	iteriais du	ros (40HI	RC ~)		lâ ı	T.	^ .		Ш			4	-	
						Dimens	ão (mm)		Ângulo (°)		rância ım)		Met	al d	uro		Cermet	
In	serto		Descrição	Nº de arestas								CVD	F	PVD		-	-	Porta-ferramenta aplicável
""	Ser to		Descrição	N° de	CW	S	RE	INSL	PSIR [®] /L	CW min.	CW max.	CR9025	PR905	PR915	PR930	KW10	UN30	⊕ G55~G58
		GMM	1520R-MT-15D	2	1.5	4.3	0 0.05	20	15	- 0.05	+ 0.05			0	0	0		KGM1.5()
	PSIRR PSIRR PSIRR PSIRR PSIRR	GMM	2020R-MT-15D 2020R-MT-15D 2020L-MT-15D	2	2	4.3	0 0.05 0	20	15	- 0.05	+ 0.05	0		0	0	0		KGM2() KGM1.5()
	Orientado a corte afiado	GMM	2520R-MT-15D	2	2.5	4.3	0 0.05	20	15	- 0.05	+ 0.05			0	0			KGM2.5() KGM2()
		GMM	3020R-MT-15D 3020R-MT-15D 3020L-MT-15D	2	3	4.3	0 0.05 0	20	15	- 0.05	+ 0.05	0		0	0	0		KGM3() KGM2()
	PSIRR SO. ²	GMM	2020R-TK-8D	2	2	4.3	0.2	20	8	- 0.05	+ 0.05			0	0	0		KGM2() KGM1.5()
35	NSL RE	GMM	2520R-TK-8D	2	2.5	4.3	0.2	20	8	- 0.05	+ 0.05				0			KGM2.5() KGM2()
	Orientado a estabilidade	GMM	3020R-TK-8D	2	3	4.3	0.25	20	8	- 0.05	+ 0.05	0		0	0			KGM3() KGM2()
	PSIRR PSING	GMR	2-TK-8D	1	2	4.3	0.2	20	8	- 0.05	+ 0.05				0	0		KGM2() KGM1.5()
25	INSL	GMR	3-TK-8D	1	3	4.3	0.25	20	8	- 0.05	+ 0.05			0		0		KGM3() KGM2()
	1 aresta / Orientado a estabilidade	GMR	4-TK-8D	1	4	4.3	0.3	20	8	- 0.05	+ 0.05			0	4	0		KGM4() KGM3()
	GMR2.2-8D / 15D	GMR GML	2.2-8D 2.2-8D	1	2.2	4.3	0.17	20	8	- 0.05	+ 0.05	0			0	0	0	KGM2()
	SSIRA CONTROL STORY	GMR	2.2-15D	1	2.2	4.3	0	20	15	- 0.05	+ 0.05	0			4		0	
	1 aresta / Orientado a corte afiado	GMR GML	3-4D 3-4D	1	3	4.3	0.2	20	4	- 0.05	+ 0.05	0		- 6	0	0	0	KGM3() KGM2()
	Corte diiduo	GMR GML	4-4D 4-4D	1	4	4.3	0.25	20	4	- 0.05	+ 0.05	0						KGM4() KGM3()

Inserto com sentido direito

Externo

Interno

Face

Condições de corte recomendadas 🕞 G143

G

Canal

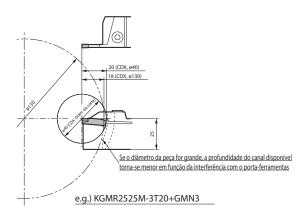
GM/GMN/GMM/GMG/GMGA/FGG

						Aço carb	ono /	Aço liga										P
D	o de aresta de					Aço inox	idáve											M
Símbolo		ificação			xemplo	Ferro fur	ndido											K
F		a afiada	-	E	Aresta afiada	Metais n	ão fe	TOSOS										N
E		eado R	E008		R0.08mm honeado	Ligas de	titân	0										S
	Holle	auo n	LUUU		No.ooniii noneado	Materiai	s dur	s (~ 40H	IRC)						П			н
						Materiai	s dur	s (40HRC	~)						0			п
						aresta			Dim	ensão (ı	mm)			ância im)	CBN	1	PCD	
	lns	serto			Descrição	Tipo da preparação da aresta	Nº de arestas	CW	S	RE	INSL	LE	CW min.	CW max.	KBN510	KBN5 25	KPD010	Porta-ferramenta aplicável G55~G58
				GMN	2	E008	1	2	4.3	0.2	20	2.9	- 0.05	+ 0.05	0			KGM2()
				GMN	2	F	1	2	4.3	0.2	20	2.9	- 0.05	+ 0.05			0	KGM1.5()
		11		GMN	3	E008	1	3	4.3	0.4	20	2.9	- 0.05	+ 0.05	0			KGM3()
		INSL	SOUTH NO RE	GMN	3	F	1	3	4.3	0.2	20	2.9	- 0.05	+ 0.05		C	0	KGM2()
		1 are	. +	GMN	4	E008	1	4	4.3	0.4	20	2.9	- 0.05	+ 0.05	0			KGM4()
		i dit	zold	GMN	4	F	1	4	4.3	0.2	20	2.9	- 0.05	+ 0.05			0	KGM3()
				GMN	5	F	1	5	4.3	0.2	20	2.9	- 0.05	+ 0.05			0	KGM5() KGM4()
				GMN	6	F	1	6	4.3	0.2	20	2.9	- 0.05	+ 0.05			0	KGMR6T30 KGM5()

Condições de corte recomendadas 🕞 G146

Características do quebra-cavaco

Série	Inserto	Características
GMM MW		Excelente escoamento do cavaco em canal, torneamento, corte
GMG MG		Baixo esforço de corte com quebra-cavacos retificado
GMG MS GMM MS		Operações de canal / torneamento / corte com menor esforço de corte devido à aresta positiva
GMM MT		Raio R(RE) pequeno e minimizando o bico que permanece no centro da face
GMMTK	25	Raio R(RE) grande e desempenho estável no corte
GMM NB		Face de saída plana e sem quebra de cavacos Funciona bem para o latão


Preparação da aresta

	Chanfrado + honeado R	Chanfrado + honeado R
	Raio R(RE) = 0.05	Canto afiado
Prep. de Aresta		
Quebra-cavaco MT	CR9025 / PR915	PR930 / KW10
	Chanfrado + Honeado R	Aresta afiada
	Raio R(RE) = $0.2 \sim 0.3$	Raio R(RE) = 0.2 ~ 0.3
Prep. de Aresta	O	U
Quebra-cavaco TK	CR9025 / PR915	PR930 / KW10
	Honeado R	Aresta afiada
. [Raio R(RE) = 0.05	Canto afiado
Prep. de Aresta		
Sem quebra-cavaco (-NB)	CR9025	PR930 / KW10

[·] Especificação de aresta afiada pode reduzir o esforço de corte em 40% menor que a aresta com chanfro

Diâmetro de corte disponível de KGM (para torno automático) / KGM-T

· Existe um limite para a profundidade do canal disponível dependendo do diâmetro da peça.

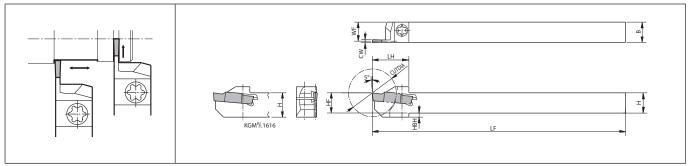
G

KGM (para torno automático) tabela de diâmetro de corte possível e profundidade de canal disponível

Canal

Externo

Interno


Face

	torrio aatorriatico,							- 1					-				
Descrição	do porta-ferramenta							D	CX (Diâm	n. de cort	te)						
KGM ^R /L	1010 🔲 -1.5	-	-	-	-	-	-	-	18	21	26	38	76				
	1212 -1.5	-	-	-	-	23	27	37	71	∞	∞	∞	∞				
	1010 -2	-	-	-	-	-	-	-	18	21	26	38	76				
	1212 -2	-	-	-	-	23	27	37	71							∞	
	1616 -2	30	37	47	68	89	131	∞	∞						•	~	
	1212 -2.5	-	-	-	-	23	27	37	71		c	×					
	1616 □-2.5 1616 □-3	30	37	47	68	89	131	∞	∞								
Profundidade o	de canal disponível CDX (mm)	15	14	13	12	11.5	11	10	9	8	7	6	5	4	3	2	1

Tabela de diâmetro de corte possível e profundidade de canal disponível do KGM-T (GMN, GM^B/L e ao usar inserto de 1 aresta)

Descrição do porta-ferramenta						D	CX (Diâm	ı. de cort	te)				
KGM ^P /L 2012K-2T17													
2020K-2T17	-	-	-	-	-	-	-	-	66	80	130	260	
2525M-2T17													
1616H-3T20	-	-	-	-	-	40	54	70	100	180			
2012K-3T20													
2020K-3T20													
2525M-3T20	-	-	-	-	-	40	90	130	240				∞
2020K-4T20													
2525M-4T20										∞		∞	
2525M-4T25				140	240								
2525M-5T25	-	-	50	140	240								
3232P-5T25				280	600								
2525M-6T30	100	300	∞	∞	∞								
Profundidade de canal disponível CDX (mm)	30	27	25	23	22	20	19	18	17	16	15	14	Abaixo de 13

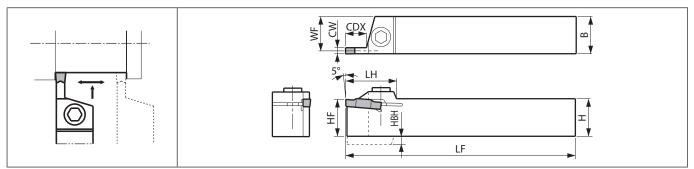
KGM (Canal externo / para torno automático)

Mostrado versão à direita

Dimensões do porta-ferramenta

														Peças de	reposição	
	Descrição		oni- dade				Di	imens	são (r	nm)				Parafuso	Chave	Insertos aplicáveis G48,G49
		R	L	CUTDIA	Н	В	LH	HF	HBH	LF	WF	CW min.	CW max.			G51~G53
KGM ^R /L	1010JX-1.5	0	0	18	10	10	18	10		120	9.4					CHIMEDO
	1212F-1.5-85	0		23	12	12	19	12	2	85	11.4	1.5	2	SE-40120TR	LTW-15S	GMM1520 GM.2()
	1212JX-1.5	0	0	23	12	12	19	12		120	11.4					GIVI.2()
KGM [₽] /∟	1010JX-2	0	0	18	10	10	18	10		120	9.15					
	1212F-2-85	0	0	23	12	12	19	12	2	85	11.15	2	3	SE-40120TR	LTW-15S	GM.2()
	1212JX-2	0	0	23	12	12	19	12		120	11.13)			GM.3()
	1616JX-2	0	0	30	16	16	24.5	16	-	120	15.15			SE-50125TR	LTW-20	
KGM ^R /L	1212F-2.5-85	0		23	12	12	19	12	2	85	11			SE-40120TR	LTW-15S	GMM24
	1212JX-2.5	0	0	23	12	12	19	12		120	_ ''	2.4	3	3E-401201K	LI W-133	GM.25
	1616JX-2.5	0	0	30	16	16	24.5	16	-	120	15			SE-50125TR	LTW-20	GM.3()
KGM ^P /L	1616JX-3	0	0	30	16	16	24.5	16	-	120	14.8	3	4	SE-50125TR	LTW-20	GM.3() , GM.4()

No caso do uso de um inserto raio completo, é necessário modificar o canto da mandíbula do porta-ferramentas.


KGM será substituido por KGD=> **G35**

KGM (Canal externo)

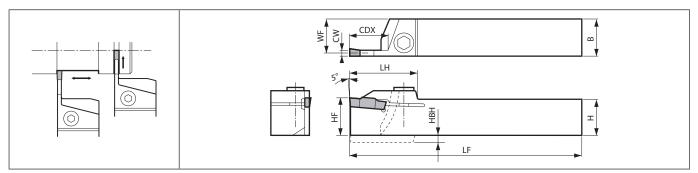
Mostrado versão à direita

Dimensões do porta-ferramenta

ווווט	crisocs do porte	<i>a</i> 10	-110	alli	CII	ta												
															Peças de	reposição		
	Descrição		oni- lade				Dir	nens	ão (m	ım)				Parafuso de fixação	Parafuso de fixação (Torx)	Chave	Chave	Insertos aplicáveis G48~G53
		R	L	XOX	Н	В	LH	HF	HBH	LF	WF	CW min.	CW max.					
KGM ^R /L	1212H-3	0			12	12		12	4	100	10.8		3	-	SB-5TR	-	LTW-20	
	1616H-3	0		9	16	16	27	16	4	100	14.8	3		HH5X16				GM.3()
	2020K-3	0	0] 9	20	20] 2/	20		125	18.8)	4	ппэх іб	-	LW-4	-	GM.4()
	2525M-3	0	0		25	25		25	_	150	23.8			HH5X25				
KGM ^R /L	2020K-4	0		10	20	20	27	20		125	18.3	4	5	HH5X16		LW-4		GM.4()
	2525M-4	0	0	10	25	25	21	25	_	150	23.3	4	ر	HH5X25	-	LVV-4	-	GM.5()
KGMR	2020K-5	0		10	20	20	27	20		125	17.8	5	6	HH5X16	_	LW-4		GM.5()
	2525M-5	0		10	25	25	21	25	_	150	22.8	ر	٥	HH5X25	_	LVV-4	_	GM.6()
KGM ^R /L	2525M-8	0	0	25	25	25	40	25	7.5	150	22	8	8	HH6X25	-	LW-5	-	GM8030

CDX exibe a profundidade de canal disponível.

O inserto com 4 mm de largura pode ser instalado no KGM e 1212H-3, mas não é recomendado em função da rigidez do porta-ferramentas.


No caso do uso de um inserto raio completo, é necessário modificar o canto da mandíbula do porta-ferramentas.

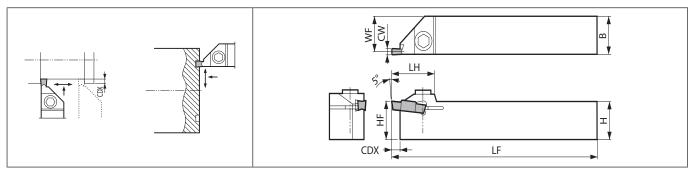
KGM será substituido por KGD=> **G34**

G

KGM-T (Canal externo / Canal profundo)

Mostrado versão à direita

Dimensões do porta-ferramenta


															Peças de	reposição		
	Descrição		oni- dade				Di	mens	ão (n	nm)				Parafuso de fixação	Parafuso de fixação (Torx)	Chave	Chave	Insertos aplicáveis ⊕ G48~G53
		R	L	XO	Н	В	LH	HF	НВН	LF	WF	CW min.	CW max.					Ç
KGM ^R /L	2012K-2T17		0		20	12		20		125	11.15			-	SB-5TR	-	LTW-20	CM 2()
	2020K-2T17	0	0	17	20	20	33	20	-	125	19.15	2	3	HH5X16		LW-4		GM.2() GM.3()
	2525M-2T17	0	0		25	25		25		150	24.15			HH5X25	-	LVV-4	-	(III.)
KGM ^R /L	1616H-3T20	0			16	16		16	4	100	14.8			HH5X16	-	LW-4	-	
	2012K-3T20		0	20	20	12	36	20		125	10.8	3	4	-	SB-5TR	-	LTW-20	GM.3()
	2020K-3T20	0	0	20	20	20	30	20	-	123	18.8)	4	HH5X16	_	LW-4	_	GM.4()
	2525M-3T20	0	0		25	25		25		150	23.8			HH5X25	-	LVV-4	-	
KGM ^R /L	2020K-4T20	0		20	20	20	36	20		125	18.3			HH5X16				CM 4()
	2525M-4T20	0		20	25	25	30	25	-	150	23.3	4	5	HH5X25	-	LW-4	-	GM.4() GM.5()
	2525M-4T25	0	0	25	23	23	41	23		130	23.3			ппэлгэ				GIVI.J()
KGM ^P /L	2525M-5T25	0	0	25	25	25	42	25		150	22.8	5	6	HH5X25	_	LW-4	_	GM.5()
	3232P-5T25	0		23	32	32	42	32	_	170	29.8	ر	٥	ΠΙΙΙΙΙ	_	LVV-4	_	GM.6()
KGMR	2525M-6T30	0		30	25	25	45	25	-	150	22.4	6	6	HH5X25	-	LW-4	-	GM6.()

No caso do uso de um inserto raio completo, você precisa modificar o canto da mandíbula do porta-ferramentas.

CDX indica a distância entre o porta-ferramenta e a a aresta de corte. Consulte a tabela (G54) para a relação entre a profundidade de canal disponível e o diâmetro de corte Ao usar o inserto GMG / GMM (2 arestas), defina a profundidade do canal abaixo de 15 mm.

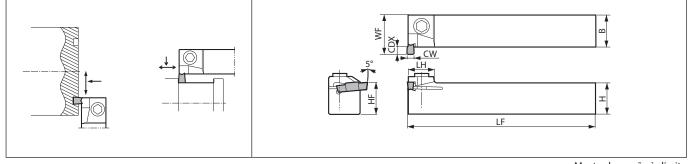
KGM será substituido por KGD=> **G34**

KGMM (Canal externo / Canal de face)

Mostrado versão à direita

Dimensões do porta-ferramenta

G


Externo Interno

Face

	l e										Peças de	reposição	
Descrição	Disponibilidade				Dime	nsão	(mm))			Parafuso de fixação	Chave	Insertos aplicáveis G48~G53
	R	XOX	Н	В	LH	HF	LF	WF	CW min.	CW max.			
KGMMR 2525M-3	0	4.8	25	25	25	25	150	23.8	3	5	HH5X25	LW-4	FGG, GM.3(), GM.4(), GM.5()

CDX exibe a profundidade de canal disponível. (Consulte a tabela **G59** para canal de face)

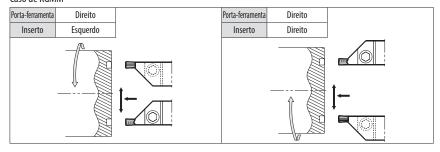
KGMS (Canal externo / Canal de face)

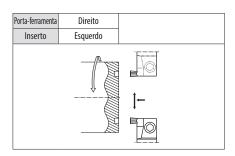
Mostrado versão à direita

Dimensões do porta-ferramenta

		Je J										Peças de	reposição	
	Descrição	Disponibilidade				Dime	nsão	(mm)				Parafuso de fixação	Chave	Insertos aplicáveis ⊕ G48~G53
		R	XO	Н	В	LH	HF	LF	WF	CW min.	CW max.			
KGMSR	2525M-3	0	4.8	25	25	17	25	150	30	3	5	HH5X25	LW-4	FGG, GM.3(), GM.4(), GM.5()

CDX exibe a profundidade de canal disponível. (Consulte a tabela **G59** para canal de face)

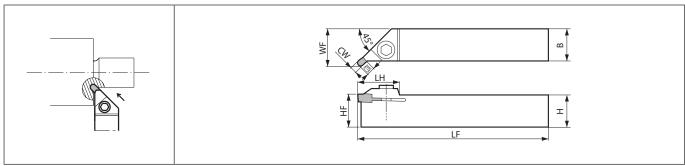

C



anal

Seleção do inserto e porta-ferramenta (Canal de face)

Caso de KGMM



Diâm. externo do canal (MIN.) e profundidade de canal (Canal de face)

KGMM / KGMS (Comum)	(mm)
	CD : Profund. do canal
	Diâm. externo do canal (MIN.)

	+	
Descrição	DAXN	CD
GMG/GMM3020-OOO		
GMG/GMM4020-OOO	ø100	4.8
GMG/GMM5020-OOO		
FGG ^R / _L 3020-02	ø22	4.3
FGG ^R / _L 4020-04	ø28	4.8
FGG ^R / _L 5020-04	ø30	4.0
GMG3020-150RU	ø22	4.3
GMG4020-200RU	ø28	4.8

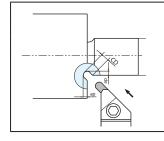
KGMU (Canal externo / Canal de rebaixamento)

Mostrado versão à direita

Dimensões do porta-ferramenta

Externo

Interno

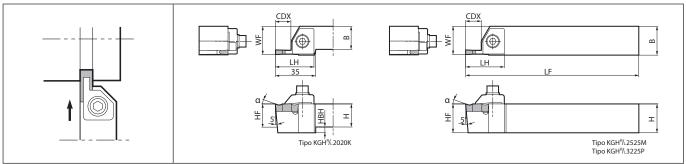

Face

	'													
		le										Peças de	reposição	
	Descrição	Disponibilidade				Dime	nsão	(mm))			Parafuso de fixação	Chave	Insertos aplicáveis
		R	XOX	Н	В	LH	HF	LF	WF	CW min.	CW max.			
KGMUR	2525M	0	4.8	25	25	28.5	25	150	28.6	3	5 (6)	HH5X25	LW-4	GMG3020RU , GMG4020RU

CDX indica a distância entre o porta-ferramenta e a aresta de corte. Consulte a tabela abaixo para a profundidade de canal disponível. Exibição de WF no GMM5020-RU. () indica insertos de canal externo quando instalados.

Os insertos de canal externo (largura de canal 3 mm~6 mm) estão mostrados. (No caso de uso de insertos GMG \cap 20-\cap 20-\cap \quad \quad \quad GMM \cap 20-\cap \quad \quad

Profundidade de rebaixamento CD



Descrição	Profund. de Rebaixamento	Distância da face da peça
Descrição	CD (mm)	ap (mm)
GMG3020-150RU	1.8	
GMG4020-200RU	4.0	1.9
os insertos para cana	GMM\(-\)\(\)\(\)\(\)\(\)	,

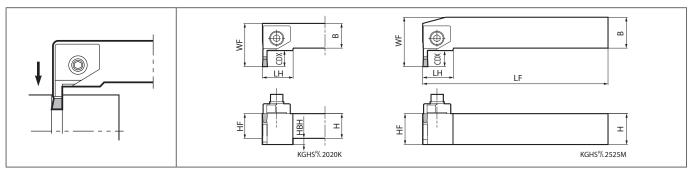
GH/GHU/GA

						Aço carbo	ono /	Aço liga							*						P
Preparação	de aresta					Aço inoxi	dáve	l							•						М
Símbolo		ificação		Fy	kemplo	Ferro fun	dido									•		0			K
S		e honeado R	S01020		o e honeado R 0.10mm×20°	Metais n	ão fe	rrosos								•					N
T		nfrado	T01020		anfrado 0.10mm × 20°	Ligas de	titân	io								•					S
						Materiais	dur	os (~ 40H	IRC)										П		
						Materiais											0		Ħ	T	Н
										io (mm)			ância im)		/leta		Cerâr	nica	Ce	rmet	
						ão da a	stas					(11)			PV OV	_	PVD	T-		_	Porta-ferramenta
	Ins	serto			Descrição	reparaç	Nº de arestas	CW	S	RE	INSL	CW	CW		П			H		_	aplicável G62~G64
						Tipo da preparação da aresta	V					min.	max.	CR902	PR930	KW10	A66N PT600M	A65	TC40N	TC60M	
				GH	4020-02 4020-05	-	2	4	7.5	0.2 0.5	20	- 0.05	+ 0.05		•	•			•	•	KGH [₽] /∟4
				GH	4520-02 4520-05	-	2	4.5	7.5	0.2 0.5	20	- 0.05	+ 0.05						•		KGHSº/∟4
				GH	5020-02 5020-05	-	2	5	7.5	0.2 0.5	20	- 0.05	+ 0.05		•	•			•	•	
				GH	5520-02 5520-05	-	2	5.5	7.5	0.2 0.5	20	- 0.05	+ 0.05						•		KGH ^R /∟5
		500 **-	_	GH	6020-02 6020-05	-	2	6	7.5	0.2 0.5	20	- 0.05	+ 0.05		•	•			•	•	KGHS∜5
		SO MINSL	RE TO THE	GH	6520-02 6520-05	-	2	6.5	7.5	0.2 0.5	20	- 0.05	+ 0.05						•		
		5	(120°)	GH	7020-02 7020-05	-	2	7	7.5	0.2 0.5	20	- 0.05	+ 0.05		•	•			•	•	
				GH	7520-02 7520-05	-	2	7.5	7.5	0.2 0.5	20	- 0.05	+ 0.05						•		KGH ^R /∟7
				GH	8020-02 8020-05	-	2	8	7.5	0.2 0.5	20	- 0.05	+ 0.05		•	•			•	•	
				GH	10025-05	-	2	10	7.5	0.5	25	- 0.05	+ 0.05		•	•					- KGH ^R /∟10
				GH	12025-05	-	2	12	7.5	0.5	25	- 0.05	+ 0.05		•	•				•	
				GH	4020-05	S01020 T01020	2	4	7.5	0.5	20	- 0.05	+ 0.05				•	•			KGH5½4 KGHS½4
		S INSL	RE	GH	5020-05	S01020 T01020	2	5	7.5	0.5	20	- 0.05	+ 0.05				•	•			KGH [₽] /∟5
		5"	120	GH	6020-05	T01020	2	6	7.5	0.5	20	- 0.05	+ 0.05					•			KGHS™5
				GH	7020-05	T01020	2	7	7.5	0.5	20	- 0.05	+ 0.05					•			KGH%7
		55 Å/	ш	GHU	40-20	-	2	4	7.5	0.25	20	- 0.05	+ 0.05	•						•	KGH%4 KGHS%4
		inst inst] \(\frac{1}{20} \)	GHU	50-20	-	2	5	7.5	0.3	20	- 0.05	+ 0.05	•						•	KGH ^R /L5
				GHU	60-20	-	2	6	7.5	0.3	20	- 0.05	+ 0.05	•						•	KGHS∜5
		40.05 N 5°		GA	30	-	2	3	5	0.2	25	- 0.05	+ 0.05	0						С	KGA [®] /∟3
		inst		GA	40	-	2	4	5	0.25	25	- 0.05	+ 0.05	0						С	KGA [®] /∟4
				GA	50	-	2	5	5	0.3	30	- 0.05	+ 0.05	0						С	KGA™5

KGH (Canal externo)

Mostrado versão à direita

Dimensões do porta-ferramenta


	Descrição		ooni- dade				Dime	nsão	(mm))			Grampo	Parafuso de fixação	Mola	Arruela	Chave	Insertos aplicáveis
	KGH [®] /∟ 2020K-4		L	XOX	Н	В	LH	HF	НВН	LF	WF (min.)	WF (max.)						
KGH [₽] /∟	2020K-4	•	•	12	20	20	22.5	20	5	125	245	240	CCII 18/		CD C	W.C	114/ 5	GH4.20
	2525M-4	•	•	13	25	25	33.5	25	-	150	24.5	24.8	CGH-1 [₽] /∟	HH6X25	SP-6	W-6	LW-5	GHU40-20
KGH ^P /L	2020K-5	•	•		20	20		20	5	125								CHE 30 CHIEFO 30
	2525M-5	•	•	13	25	25	33.5	25		150	25	25.8	CGH-1 [®] /∟	HH6X25	SP-6	W-6	LW-5	GH5.20 , GHU50-20 GH6.20 , GHU60-20
	3225P-5	•	•		32	23		32	_	170								d110.20 , d11000 20
KGH [₽] /∟	2020K-7	•	•	13	20	20	33.5	20	7	125	24.5	25	CGH-2 [₽] /∟	HH6X25	SP-6	W-6	LW-5	GH7.20
	2525M-7	•	•	13	25	25	اد.دو	25	-	150	24.3	23	Cun-Z'7L	ппил23) Jr-0	VV-O	LW-3	GH8020
KGH [₽] /∟	2525M-10	•	•	17	25	25	11	25		150	25.5	26.5	CGH-3 ^R /L	HH6X25	SP-6	W-6	LW-5	GH10025-05
	3225P-10	•		''	32	25 41 32		32	-	170	23.3	20.5	CGU-3'7L	ппох25) 3r-0	VV-D	LW-5	GH12025-05

CDX exibe a profundidade de canal disponível.

O WF do Porta-ferramenta KGH[®]¼ depende da largura da aresta do inserto.

Grampo: GH-OR para porta-ferramenta direito e CGH-OL para porta-ferramenta esquerdo.

KGHS (Canal externo)

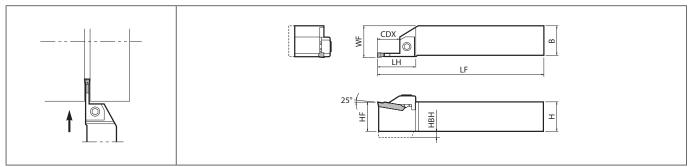
Mostrado versão à direita

Dimensões do porta-ferramenta

													Pe	ças de reposiç	ão		
	Descrição		ooni- dade			Dir	nens	ão (m	ım)			Grampo	Parafuso de fixação	Mola	Arruela	Chave	Insertos aplicáveis
		R	L	XO	Н	В	LH	HF	HBH	LF	WF				0		
KGHS ^R /L	2020K-4	•	•	12	20	20	7.	20	5	125	35	CGH-1 ^L / _R	HH6X25	SP-6	W-6	LW-5	GH4.20
	2525M-4	• (13	25	25	25	25	-	150	40	CGH-17 _R	ППОЛДЭ	3r-0	VV-O	LVV-3	GHU40-20
KGHS ^R /L	2020K-5	•	•	13	20	20	25	20	5	125	35	CGH-1 ^L / _R	HH6X25	SP-6	W-6	LW-5	GH5.20, GHU50-20
	2525M-5	•	•	13	25	25	23	25	-	150	40	Cun-17 _R	ППОЛДЭ) Jr-0	VV-0	LW-3	GH6.20, GHU60-20

CDX exibe a profundidade de canal disponível.

Grampo: CGH-OL para porta-ferramenta direito e CGH-OR para porta-ferramenta esquerdo.


Ângulo de saída (α) após instalação do inserto GH / GHU

	Ao usar GHOO-OO		Ao usar GHUOO-OO
α	Classes do inserto	α	Classes do inserto
0°	A65, A66N, PT600M		
10°	TC40N		TN60
20°	TN90, TC60M PR930 KW10	10°	CR9025

KGA (Canal externo / Canal profundo)

Mostrado versão à direita

Dimensões do porta-ferramenta

Externo

Interno

Face

													Peças de	reposição		
	Descrição	Disp bilio				Dir	nens	ăo (m	m)			Parafuso de fixação	Grampo	Mola	Chave	Insertos aplicáveis
		R	L	XO	Н	В	LH	HF	HBH	LF	WF					
KGA ^R /L	2020K-3	0	0	20	20	20	37	20	5	125	21.5		CCA 2B/	CD C	114/ 5	CA20
	2525M-3	0	0	20	25	25	3/	25	-	150	26.5	HH6X20	CGA-3 [™] /∟	SP-6	LW-5	GA30
KGAR	2020K-4	0		20	20	20	37	20	5	125	21.5	HH6X20	CGA-4R	SP-6	LW-5	GA40
	2525M-4	0		20	25	25	3/	25	-	150	26.5	пполдо	CGA-4K	3r-0	LVV-3	UA40
KGAR	2020K-5	0		25	20	20	42	20	5	125	21.5	HH6X20	CGA-5R	CD 6	LW-5	GA50
	2525M-5	0		25	25	25	42	25	-	150	26.5	ппох20	CGA-2K	SP-6	LW-5	UCAD
CDX exi	be a profundidade de cana	al dis	pon	ível.												

Grampo : CGA-OR para porta-ferramenta direito e CGA-OL para porta-ferramenta esquerdo.

Condições de corte recomendadas

Insertos GH - quebra-cavaco retificado

			Classe red	comendada (V	c: m/min)							
Material	Cer	met	Metal duro PVD	Metal duro		Cerâmica				Observações		
	TC40N	TC60M	PR930	KW10	A65	A66N	PT600M	GH 40~50	GH 55~70	GH 75~80	GH 100~120	Obs
Aço carbono	☆ 150~220	☆ 100~150	★ 80~180	-	-	-	-	(1) 0.07~0.2 (2) 0.07~0.15 (3) Max. 1.0	(1) 0.07~0.2 (2) 0.07~0.15 (3) Max. 1.0	(1) 0.1~0.25 (2) 0.1~0.2 (3) Max. 1.5	(1) 0.15~0.3 (2) 0.15~0.25 (3) Max. 2.0	
Aço liga	☆ 130~200	☆ 80~130	★ 80~160	-	-	-	-	(1) 0.07~0.18 (2) 0.07~0.13 (3) Max. 1.0	(1) 0.07~0.18 (2) 0.07~0.13 (3) Max. 1.0	(1) 0.1~0.23 (2) 0.1~0.18 (3) Max. 1.5	(1) 0.15~0.27 (2) 0.15~0.22 (3) Max. 2.0	
Aço inoxidável	-	☆ 60~100	★ 60~130	-	-	-	-	(1) 0.07~0.16 (2) 0.07~0.13 (3) Max. 1.0	(1) 0.07~0.16 (2) 0.07~0.13 (3) Max. 1.0	(1) 0.1~0.21 (2) 0.1~0.18 (3) Max. 1.5	(1) 0.15~0.25 (2) 0.15~0.22 (3) Max. 2.0	
Ferro fundido	-	-	-	★ 60~100	∱ 150~300	↑ 150~300	↑ 150~300	KW10 (1) 0.07~0.2 (2) 0.07~0.15 (3) Max. 1.0 A65/A66N (1) 0.03~0.07 (2) Não recom. (3) Não recom.	KW10 (1) 0.07~0.2 (2) 0.07~0.15 (3) Max. 1.0 A65/A66N (1) 0.03~0.07 (2) Não recom. (3) Não recom.	KW10 (1) 0.1~0.25 (2) 0.1~0.2 (3) Max. 1.5 A65/A66N (1) 0.05~0.09 (2) Não recom. (3) Não recom.	KW10 (1) 0.15~0.3 (2) 0.15~0.25 (3) Max. 2.0 A65/A66N (1) 0.05~0.09 (2) Não recom. (3) Não recom.	Com refrig.
Ligas de alumínio	-	-	-	★ 150~400	-	-	-	(1) 0.07~0.2 (2) 0.07~0.15 (3) Max. 1.0	(1) 0.07~0.2 (2) 0.07~0.15 (3) Max. 1.0	(1) 0.1~0.25 (2) 0.1~0.2 (3) Max. 1.5	(1) 0.15~0.3 (2) 0.15~0.25 (3) Max. 2.0	
Latão	-	-	-	★ 150~300	-	-	-	(1) 0.07~0.2 (2) 0.07~0.15 (3) Max. 1.0	(1) 0.07~0.2 (2) 0.07~0.15 (3) Max. 1.0	(1) 0.1~0.25 (2) 0.1~0.2 (3) Max. 1.5	(1) 0.15~0.3 (2) 0.15~0.25 (3) Max. 2.0	
Materiais duros	-	-	-	-	☆ 40~80	☆ 40~80	☆ 40~80	(1) 0.02~0.05 (2) 0.01~0.03 (3) Max. 0.1	(1) 0.02~0.05 (2) 0.01~0.03 (3) Max. 0.2	(1) 0.02~0.05 (2) 0.01~0.04 (3) Max. 0.2		

^{*} A condição de corte acima é para canal externo. Defina a velocidade de corte e o avanço 10% inferior ao canal interno.

★:1ª recomendação ☆:2ª recomendação

Insertos GHU - Quebra-cavaco moldado

	Classe recomend	ada (Vc: m/min)		(1) f para canal (mm/rev) (2) f para torneamento (mm/rev) (3) ap para torneamento (mm)						
Material	Cermet	Metal duro CVD								
macra	TN60	CR9025	GHU 40-20	GHU 50-20	GHU 60-20	Observações				
Aço carbono	☆ 130~200	☆ 80~180	(1) 0.06~0.12 (2) 0.05~0.1 (3) Max. 1.0	(1) 0.06~0.12 (2) 0.05~0.1 (3) Max. 1.0	(1) 0.06~0.15 (2) 0.05~0.12 (3) Max. 1.5					
Aço liga	☆ 100~180	☆ 80~160	(1) 0.06~0.12 (2) 0.05~0.1 (3) Max. 1.0	(1) 0.06~0.12 (2) 0.05~0.1 (3) Max. 1.0	(1) 0.06~0.15 (2) 0.05~0.12 (3) Max. 1.5	Com refrig.				
Aço inoxidável	-	☆ 60~130	(1) 0.06~0.1 (2) 0.05~0.08 (3) Max. 0.8	(1) 0.06~0.1 (2) 0.05~0.08 (3) Max. 0.8	(1) 0.06~0.12 (2) 0.05~0.1 (3) Max. 1.2					

^{*} A condição de corte acima é para canal externo. Defina a velocidade de corte e o avanço 10% inferior ao canal interno.

Insertos GA - Quebra-cavaco moldado

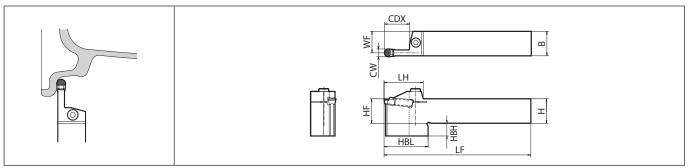
	Classe recomend	lada (Vc: m/min)		(1) f para canal (mm/rev)						
Material	Cermet	Metal duro CVD		(2) f para torneamento (mm/rev) (3) ap para torneamento (mm)						
	TN60	TN60 CR9025		GA 40	GA 50					
Aço carbono	☆ 130~200	★ 80~180	(1) 0.06~0.18 (2) 0.05~0.15 (3) Max. 0.8	(1) 0.06~0.21 (2) 0.05~0.17 (3) Max. 1.0	(1) 0.06~0.25 (2) 0.05~0.2 (3) Max. 1.3					
Aço liga	☆ 100~180	★ 80~160	(1) 0.06~0.15 (2) 0.05~0.12 (3) Max. 0.3	(1) 0.06~0.18 (2) 0.05~0.15 (3) Max. 0.5	(1) 0.06~0.22 (2) 0.05~0.18 (3) Max. 0.8	Com refrig.				
Aço inoxidável	-	★ 60~130	(1) 0.06~0.1 (2) 0.05~0.08 (3) Max. 0.8	(1) 0.06~0.1 (2) 0.05~0.08 (3) Max. 0.8	(1) 0.06~0.12 (2) 0.05~0.1 (3) Max. 1.2					

★:1ª recomendação ☆:2ª recomendação

^{★:1}ª recomendação ☆:2ª recomendação

GMGW

				Aço	carbono	/ Aço liga	1						Р
				Aço	inoxidáv	el							М
		Ferro fundido									K		
				Me	tais não f	errosos						•	N
				Lig	as de titâ	nio							S
				-	teriais du								Н
		1		Ma	teriais du	ros (40HF	RC ~)						
						Dim	ensão (r	nm)			ância m)	PCD	
ln:	serto	Descrição			CW	S	RE	INSL	LE	CW min.	CW max.	KPD001 '	Porta-ferramenta aplicável G67
	Lu Ma	GMGW	6030-30R	1	6	5.5	3	30	4.5	- 0.03	+ 0.03	•	KGMW ^R /L2525M-6
5		GMGW	8030-40R	1	8	5.5	4	30	6	- 0.03	+ 0.03	•	KGMW ^P /L2525M-8
ST	NO. 1	GMGW	8030-40R-HR	1	8	5.5	4	30	5	- 0.03	+ 0.03	•	KGMW [®] /∟2525M-8


Os insertos GMGW são usados exclusivamente para porta-ferramentas KGMW. Eles não podem ser usados em outro porta-ferramenta em função do seu ângulo de instalação diferente.

Preparação da aresta de insertos GMGW: Aresta de corte honeada R.

Externo

Interno

KGMW (Canal externo / Canal de face / Cópia)

Mostrado versão à direita

Dimensões do porta-ferramenta

												Peças de	reposição	
Descrição		oni- lade	Dimensão (mm)									Parafuso de fixação	Chave	Insertos aplicáveis
	R	L	CDX	Н	В	LH	HF	HBH	HBL	LF	WF			J
KGMW [₽] /∟ 2525M-6	•	•	25	25	25	40	25	13	55	150	22.8	HH6X25	LW-5	GMGW6030-30R
KGMW ^P /L 2525M-8	•	•	25	25	25	40	25	13	55	150	22	HH6X25	LW-5	GMGW8030-40R (-HR)

Condições de corte recomendadas

	Classe recomendada (Vc: m/min)	(1) f para canal (mm/rev)
Material	PCD	(2) f para torneamento (mm/rev)
	KPD001	(3) ap para torneamento (mm)
Alumínio	★ 150~2,700	(1) 0.05 ~ 0.3 (2) 0.2 ~ 0.8 (3) Max. 3

★:1ª recomendação

TGF

			Aço	carbono	/ Aço liga	1							•	9	T		P
			Aço	inoxidáv	el								•	9	Т		М
			Feri	ro fundid	0										•		K
			Met	tais não f	errosos									•	•	•	N
			Liga	as de titâ	nio												S
			Mat	teriais du	ros (~ 40	HRC)							•	0			н
			Mat	teriais du	ros (40HF	RC ~)								П	Τ		п
						Dim	ensão (r	nm)			Tolerând	ia (mm)		Λetal duro	ţomo;	PO	
Ins	serto	Descrição	Nº de arestas								CW	CW	P	/D	-		Porta-ferramenta aplicável
			Ν° d	CW	CDX	IC	S	D1	RE	LE	min.	max.	PR1215	PR930	TCAON	KPD001	
	KC RE PRESENTED TO THE	TGF32R 033-005 050-005 075-010 095-010 100-010 120-010 125-010 140-010 145-010 150-010 175-010 200-010 250-010	3	0.33 0.5 0.75 0.95 1 1.2 1.25 1.4 1.45 1.5 1.75 2	0.8 1.2 2 2 2 2 2 2 2 2 2 2 2 2 5 2 5 2.5	9.525	3.18	4.6	0.05 0.05 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	_	- 0.025	+ 0.025					KTGFR16 KTGFR16F SKTGFL16
3		TGF32L 050-005 075-010 095-010 100-010 120-010 125-010 140-010 145-010 150-010 175-010 200-010 250-010		0.5 0.75 0.95 1 1.2 1.25 1.4 1.45 1.5 1.75 2	1.2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2				0.05 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1								KTGFL16 KTGFL16F
Mostrado versão	CW+0.03 RE TRE TREE TREE TREE TREE TREE TREE TR	TGF32R 125-010 150-010 200-010	1	1.25 1.5 2	2 2 2.5	9.525	3.18	4.6	0.1	1.7 1.7 1.9	- 0.03	+ 0.03					KTGFR16 KTGFR16F SKTGFL16

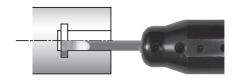
External Internal

Face

Mostrado versão à direita CDX exibe a profundidade de canal disponível.

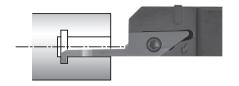
Condições de corte recomendadas

		Classe re	ecomendad	a (Vc: m/m	in)			(1) f para cana	l (mm/rev)		S	
Material	Cermet	MEGACOAT	Metal d	luro PVD	Metal duro		(2) f para torneamento (mm/rev) (3) ap para torneamento (mm)					
Material	TC40N	PR1215	PR930	PR1115	KW10	KPD001 (KPD010)	TGF32 ^R /∟ 033~050-005	TGF32 ^P /∟ 075~095-010	TGF32 ^F /∟ 100~145-010	TGF32 ^F /∟ 150~250-010	Observações	
Aço carbono	☆ 150~220	★ 80~180	☆ 80~180	☆ 80~180	-	-	(1) 0.01~0.05 (2) Não recom. (3) Não recom.	(1) 0.02~0.07 (2) Não recom. (3) Não recom.	(1) 0.03~0.08 (2) 0.03~0.06 (3) Max. 0.2	(1) 0.03~0.08 (2) 0.03~0.06 (3) Max. 0.2		
Aço liga	☆ 130~200	★ 80~160	☆ 80~160	☆ 80~160	-	-	(1) 0.01~0.04 (2) Não recom. (3) Não recom.	(1) 0.02~0.06 (2) Não recom. (3) Não recom.	(1) 0.03~0.07 (2) 0.02~0.05 (3) Max. 0.2	(1) 0.03~0.07 (2) 0.02~0.05 (3) Max. 0.2		
Aço inoxidável	-	☆ 60~130	☆ 60~130	★ 60~130	-	-	(1) 0.01~0.04 (2) Não recom. (3) Não recom.	(1) 0.02~0.06 (2) Não recom. (3) Não recom.	(1) 0.03~0.07 (2) 0.02~0.05 (3) Max. 0.2	(1) 0.03~0.07 (2) 0.02~0.05 (3) Max. 0.2	Com refrig.	
Ferro fundido	-	-	-	-	★ 60~100	-	(1) 0.01∼0.05 (2) Não recom. (3) Não recom.	(1) 0.02~0.07 (2) Não recom. (3) Não recom.	(1) 0.03~0.08 (2) 0.03~0.06 (3) Max. 0.2	(1) 0.03~0.08 (2) 0.03~0.06 (3) Max. 0.2	Com	
Ligas de alumínio	-	-	-	-	★ 150~400	★ 150~2,000	(1) 0.01~0.05 (2) Não recom. (3) Não recom.	(1) 0.02~0.07 (2) Não recom. (3) Não recom.	(1) 0.03~0.08 (2) 0.03~0.06 (3) Max. 0.2	(1) 0.03~0.08 (2) 0.03~0.06 (3) Max. 0.2		
Latão	-	-	-	-	★ 150~300	★ 200~800	(1) 0.01∼0.04 (2) Não recom. (3) Não recom.	(1) 0.02~0.06 (2) Não recom. (3) Não recom.	(1) 0.03~0.07 (2) 0.02~0.05 (3) Max. 0.2	(1) 0.03~0.07 (2) 0.02~0.05 (3) Max. 0.2		


★:1ª recomendação ☆:2ª recomendação

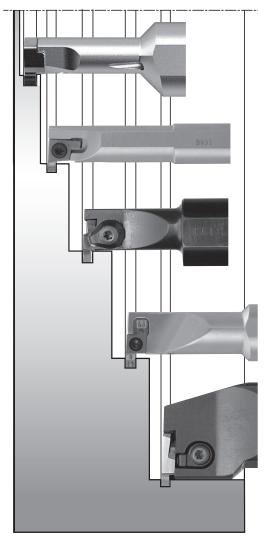
Insertos CBN e PCD são vendidos em caixa com 1 peça

G


Canal interno de diâmetro pequeno

EZ Bar e system tip-bar

Tipo	EZG
Diâm. mínimo do furo	ø3~ø8
Largura da aresta (mm)	0.5~2.0
Profund. do canal (mm)	1.0~2.0
Consulte a pág.	G71

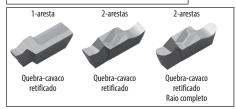


Tipo	VNG
Diâm. mínimo do furo	ø4~ø7
Largura da aresta (mm)	1.0~2.0
Profund. do canal (mm)	0.8~2.0
Consulte a pág.	G73

Canal interno ø8~ - Canal raso

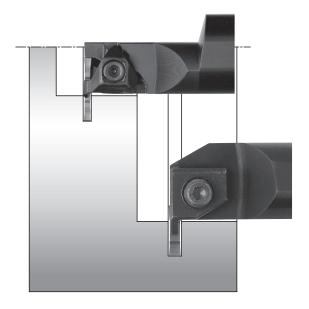
Tipo	SIGC
Diâm. mínimo do furo	ø8~ø12
Largura da aresta (mm)	1.0~3.0
Profund. do canal (mm)	1.5~2.2
Consulte a pág.	G76.G77

Tipo	SIGE
про	SIGE
Diâm. mínimo do furo	ø8∼ø12
Largura da aresta (mm)	1.0~3.0
Profund. do canal (mm)	1.5~2.2
Consulte a pág.	G81~G83


Tipo	GIV
Diâm. mínimo do furo	ø12~ø40
Largura da aresta (mm)	1.0~5.0
Profund. do canal (mm)	1.7~6.3
Consulte a pág.	G86~G88

Tipo	SIGE
Diâm. mínimo do furo	ø14~ø40
Largura da aresta (mm)	1.0~5.0
Profund. do canal (mm)	2.5~6.5
Consulte a pág.	G81~G83

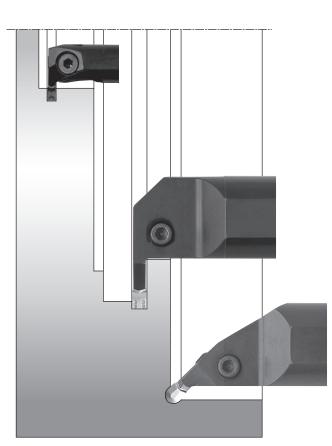
0
8
3



Raio completo

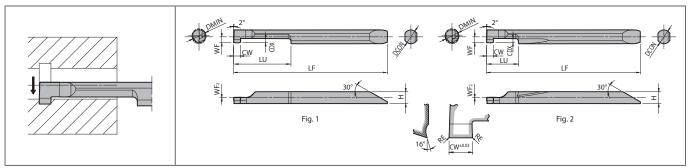
Resumo do canal profundo

Tipo	KGIA				
Diâm. mínimo do furo	ø32~ø66				
Largura da aresta (mm)	3.0~5.0				
Profund. do canal (mm)	10~15				
Consulte a pág.	G97				


Tipo	KIGH
Diâm. mínimo do furo	ø45~ø65
Largura da aresta (mm)	4.0~8.0
Profund. do canal (mm)	12
Consulte a pág.	G93

Resumo do canal interno e torneamento ø20~

Tipo	KGDI
Diâm. mínimo do furo	ø18~ø40
Largura da aresta (mm)	2.0~5.0
Profund. do canal (mm)	4.5~11.0
Consulte a pág.	G91


Tipo	KIGM-8
Diâm. mínimo do furo	ø65
Largura da aresta (mm)	8.0
Profund. do canal (mm)	20
Consulte a nág	G95

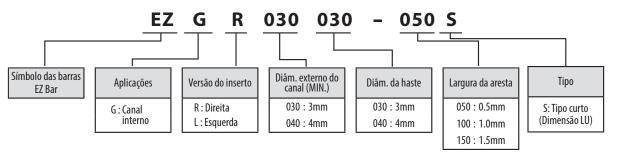
Tipo	KIGMU-8
Diâm. mínimo do furo	ø65
Largura da aresta (mm)	8.0
Profund. do canal (mm)	2.2
Consulte a pág.	G95

EZG (Canal interno)

Mostrado versão à direita

Dimensões

			Dimensão (mm) Tolerância (mm))	Meta	l duro										
	Descrição	Nº de arestas											Fig.					PVD	-	Luvas aplicáveis
	Descrição	N° de	DMIN	CW	XO	RE	DCON	Н	LF	LU	WF	WF2	H	CW min.	CW max.	RE min.	RE max.	PR122	5 GW0	● F38~F43
																		R	L R	
EZG [®] ∕∟	040040-050 040040-100 040040-150 040040-200	1	4	0.5 1 1.5 2	1	0.05	4	3.45	44.7	12	1.7	0	2	-0.03	+0.03	-0.013	+0.013	• [•	EZH040
EZG [®] /L	050050-100 050050-150 050050-200	1	5	1 1.5 2	1.5	0.05	5	4.3	52.8	20	2.15	0	1	-0.03	+0.03	-0.013	+0.013	• [•	EZH050
EZG ^P /L	060060-100 060060-150 060060-200	1	6	1 1.5 2	2	0.05	6	5.15	60.7	20	2.65	0	1	-0.03	+0.03	-0.013	+0.013	• [•	EZH060
EZG [®] /L	070070-100 070070-150 070070-200	1	7	1 1.5 2	2	0.05	7	6.2	63.7	25	3.05	0	1	-0.03	+0.03	-0.013	+0.013	• [•	F711070
EZG [®] /L	080070-100 080070-150 080070-200	1	8	1 1.5 2	2	0.05	7	6.2	63.7	25	3.45	0	1	-0.03	+0.03	-0.013	+0.013	• [•	EZH070
EZGR	030030-050S 030030-100S	1	3	0.5 1	0.8	0.05	3	2.5	38.7	5	1.25	0	2	-0.03	+0.03	-0.013	+0.013	•		EZH030
EZGR	040040-050S 040040-100S 040040-150S 040040-200S	1	4	0.5 1 1.5 2	1	0.05	4	3.45	44.7	8	1.7	0	2	-0.03	+0.03	-0.013	+0.013	• • •		EZH040
EZGR	050050-100S 050050-150S 050050-200S	1	5	1 1.5 2	1.5	0.05	5	4.3	52.8	10	2.15	0	2	-0.03	+0.03	-0.013	+0.013	•		EZH050
EZGR	060060-100S 060060-150S 060060-200S	1	6	1 1.5 2	2	0.05	6	5.15	60.7	10	2.65	0	2	-0.03	+0.03	-0.013	+0.013	• • •		EZH060
EZGR	070070-100S 070070-150S 070070-200S	1	7	1 1.5 2	2	0.05	7	6.2	63.7	10	3.05	0	2	-0.03	+0.03	-0.013	+0.013	•		EZH070
EZGR	080070-100S 080070-150S 080070-200S	1	8	1 1.5 2	2	0.05	7	6.2	63.7	10	3.45	0	2	-0.03	+0.03	-0.013	+0.013	• •		EZNV/U

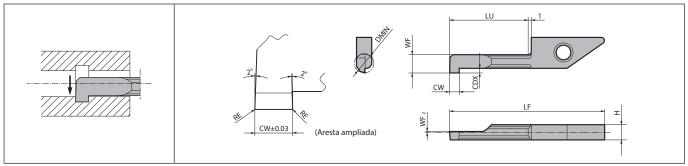

CDX exibe a profundidade de canal disponível.

Condições de corte recomendadas
 G144

Sistema de identificação de barras EZ Bar

Luvas aplicáveis

Interno


Face

			Luva				Insertos aplic	áveis para canal Inter	no de pequeno diâm.	Fabricante de	
EZH-CT Compr. em balanço ajustável com furo de refrig F38, F39		(Com _l	EZH-HP primento em balanço ajustável)		EZH-ST	Diâm. da haste da luva	EZG		Diâm. da haste	máquinas	
			● F40, F41	● F42, F43		DCON(mm)			DCON(mm)	aplicável	
				EZH	03012ST-80		EZG_	030030	3		
					04012ST-80		EZG_	040040	4		
	_				05012ST-80	12	EZG_	050050	5	(Use goral)	
	-		-		06012ST-80	12	EZG_	060060	6	(Uso geral)	
					07012ST-80		EZG_	070070	7		
					0/01231-80		EZG_	080070	8		
		EZH	03016HP-100	EZH	03016ST-100		EZG_	030030	3		
			04016HP-100		04016ST-100		EZG_	040040	4		
			05016HP-100		05016ST-100	1,	EZG_	050050	5	(111)	
	-	06016HP-100			06016ST-100	16	EZG_	060060	6	(Uso geral)	
			07016UD 100	1	07016CT 100		EZG_	070070	7		
			07016HP-100		07016ST-100		EZG_	080070	8		
EZH	03019CT-120	EZH	03019HP-120	EZH	03019ST-120		EZG_	030030	3	Citizen Machinery	
	04019CT-120		04019HP-120	1	04019ST-120	1	EZG_	040040	4		
	05019CT-120		05019HP-120		05019ST-120	10.05	EZG_	050050	5		
	06019CT-120		06019HP-120		06019ST-120	19.05	EZG_	060060	6		
	0704067 420		07040110 420	0704067 420		EZG_	070070	7			
	07019CT-120		07019HP-120		07019ST-120		EZG_	080070	8		
EZH	03020CT-120	EZH	03020HP-120	EZH	03020ST-120		EZG_	030030	3		
	04020CT-120		04020HP-120		04020ST-120		EZG_	040040	4	Eguro	
	05020CT-120		05020HP-120	1	05020ST-120 06020ST-120	30	EZG_	050050	5	Tsugami Citizen Machinery	
	06020CT-120	06020HP-120	06020HP-120			20	EZG	060060	6		
	0702067 420				EZG_	070070	7	(Uso geral)			
	07020CT-120		07020HP-120		07020ST-120		EZG_	080070	8		
EZH	03022CT-135	EZH	03022HP-135	EZH	03022ST-135		EZG_	030030	3		
	04022CT-135		04022HP-135	1	04022ST-135	1	EZG_	040040	4		
	05022CT-135		05022HP-135	1	05022ST-135] ,,	EZG_	050050	5	Star Micronics	
	06022CT-135	06022HP-135			06022ST-135	22	EZG_	060060	6	Nomura DS Tsugami	
	0702267 425		07022110 425		07022CT 125	1	EZG_	070070	7	isugaiiii	
	07022CT-135		07022HP-135		07022ST-135		EZG_	080070	8		
EZH	03025.0CT-135	EZH	03025.0HP-135	EZH	03025.0ST-135		EZG_	030030	3		
	04025.0CT-135		04025.0HP-135		04025.0ST-135		EZG_	040040	4	Eguro	
	05025.0CT-135		05025.0HP-135		05025.0ST-135	7.	EZG_	050050	5	Tsugami	
	06025.0CT-135		06025.0HP-135		06025.0ST-135	25	EZG_	060060	6	Citizen Machinery	
	07025 OCT 125		0702E 0UD 12E		07025 OCT 125		EZG_	070070	7	(Uso geral)	
	07025.0CT-135		07025.0HP-135		07025.0ST-135		EZG_	080070	8		
EZH	03025.4CT-120	EZH	03025.4HP-120	EZH	03025.4ST-120		EZG_	030030	3		
	04025.4CT-120		04025.4HP-120		04025.4ST-120		EZG_	040040	4		
	05025.4CT-120		05025.4HP-120		05025.4ST-120	75.4	EZG_	050050	5	Citizon Mashinson	
	06025.4CT-120		06025.4HP-120		06025.4ST-120	25.4	EZG_	060060	6	Citizen Machinery	
	0702F 4CT 120				0702F 4CT 120]	EZG_	070070	7		
	07025.4CT-120	07025.4HP-120			07025.4ST-120		EZG_	080070	8		

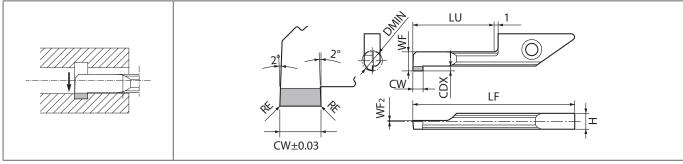
 $[\]cdot \, \mathsf{Escolha} \, \mathsf{luvas} \, (\mathsf{DCB}) \, \mathsf{que} \, \mathsf{coincidam} \, \mathsf{com} \, \mathsf{a} \, \mathsf{dimens\~ao} \, \mathsf{DCON} \, \mathsf{dos} \, \mathsf{insertos} \, \mathsf{de} \, \mathsf{canal} \, \mathsf{interno}.$

[·] O pino de ajuste não pode ser instalado em luvas EZH-ST. Para ajustar o balanço da barra, use luvas EZH-CT / HP.

VNG

Mostrado versão à direita

Dimensões


						Dime	nsão	(mm))				ância m)	Meta dure		
	Descrição	Nº de arestas	DMIN	CW	XO	RE	Н	LF	LU	WF	WF2	CW min.	CW max.	PR1225	KW10 -	Porta-ferramenta aplicável F48~F51
VNGR	0410-11 0420-11	1	4	1 2	0.8	0.05	3.9	30.8	11	3.5	0.1	-0.03	+0.03	• •	•	
VNGR	0510-11 0520-11	1	5	1 2	1	0.05	3.9	30.8	11	4.4	0.1	-0.03	+0.03	• •	•	SVNR12N SVNSR12N
VNGR	0610-20 0620-20	1	6	1 2	1.8	0.05	3.9	39.8	20	5.2	0.3	-0.03	+0.03	• •	•	SSVNR12N SSVNR12SN
VNGR	0710-20 0720-20	1	7	1 2	2	0.05	3.9	39.8	20	6.2	0.3	-0.03	+0.03	• •	•	

CDX exibe a profundidade de canal disponível. Condições de corte recomendadas

G144

WF2 indica que a aresta de corte está acima da posição central da ferramenta.

VNG

Mostrado versão à direita

Dimensions

						Dime	nsão	(mm)					ância m)	PCD	
	Descrição	N⁰ de arestas	DMIN	CW	XO	RE	Н	LF	LU	WF	WF2	CW min.	CW max.	KPD001	Porta-ferramenta aplicável F48~F51
VNGR	0410-11NB 0420-11NB	1	4	1 2	0.8	0.05	3.9	30.8	11	3.5	0.1	-0.03	+0.03	MTO MTO	
VNGR	0510-11NB 0520-11NB	1	5	1 2	1	0.05	3.9	30.8	11	4.4	0.1	-0.03	+0.03	MTO MTO	SVNR12N SVNSR12N
VNGR	0610-20NB 0620-20NB	1	6	1 2	1.8	0.05	3.9	39.8	20	5.2	0.3	-0.03	+0.03	MTO MTO	SSVNR12N SSVNR12SN
VNGR	0710-20NB 0720-20NB	1	7	1 2	2	0.05	3.9	39.8	20	6.2	0.3	-0.03	+0.03	MTO MTO	

CDX exibe a profundidade de canal disponível.

WF2 indica que a aresta de corte está acima da posição central da ferramenta.

•: Item standard MT0: Produzido sob pedido

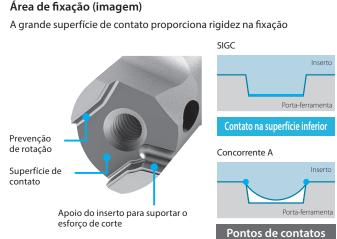
As barras de haste do sistema são vendidas em caixas com 5 peças

SIGC

O recém-desenvolvido sistema de fixação assegura uma fixação rígida do inserto para proporcionar uma usinagem de alta precisão. Excelente escoamento do cavaco com furos de refrigeração duplos e formato do bolsão de saída otimizado com diâmetro mínimo de corte a partir de ø8mm

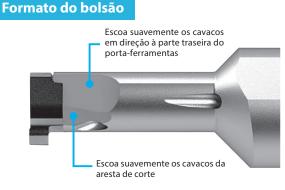
1

O sistema de fixação rígida do inserto proporciona uma usinagem de alta precisão


Inserto firmemente apoiado na superfície inferior e fixado na direção axial A usinagem estável é obtida pela fixação firme do inserto

Canal

Externo Interno Face



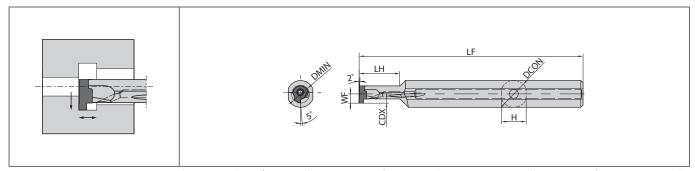
2

Excelente escoamento do cavaco

Excelente escoamento do cavaco com furos de refrigeração duplos e formato do bolsão de saída otimizado

A mehor solução para o escoamento do cavaco em pequenos canais internos Evita o esmagamento do cavaco

G


anal

\mathbf{GC}

				Aço	carbono	/ Aço liga	1							ෆ	•	P
				Aço	inoxidáv	rel .								•	8	M
				-	ro fundid											K
				-	tais não f											N
					as de titâ	nio iros (~ 40	HBC)									S
				\vdash		ros (40HF									Н	Н
				Ivia	teriais au	1110+) 2011		ensão (ı	mm)			Tolerâno	tia (mm)		etal uro	
				stas											VD.	Porta-ferramenta
Inserto			Descrição	Nº de arestas	CW	CDX	S	D1	RE	INSL	W1	CW	CW			aplicável G76,G77
				Ň	CVV	CDA	,	וט	INL	INJL	VVI	min.	max.	PR1535	PR1725	a 70,a77
		GC08R	100-005 120-005 125-005 150-010 200-010	1	1 1.2 1.25 1.5 2	1.5	3.5	2.7	0.05 0.05 0.05 0.1 0.1	7.7	3.4	- 0.025	+ 0.025	• • • •	• • •	SIGCR08
		GC08L	100-005 120-005 125-005 150-010 200-010	·	1 1.2 1.25 1.5 2	1.5	3.3	27	0.05 0.05 0.05 0.1 0.1	,	3.1	0.023	1 0.023	• • • •	•	SIGCL08
		GC10R	100-005 120-005 125-005 145-010 150-010 200-010 250-020 300-020	1	1 1.2 1.25 1.45 1.5 2 2.5 3	2.2	4.4	3.5	0.05 0.05 0.05 0.1 0.1 0.1 0.2 0.2	9.6	4.7	- 0.025	. 0.025	••••••	• • • • • •	SIGCR10
	NT NE RE COW COME OF THE COW	GC10L	100-005 120-005 125-005 145-010 150-010 200-010 250-020 300-020	1	1 1.2 1.25 1.45 1.5 2 2.5 3	2.2	4.4	3.3	0.05 0.05 0.05 0.1 0.1 0.1 0.2 0.2	9.0	4./	- 0.023	+ 0.023	••••••	• • • • • •	SIGCL10
		GC12R	100-005 120-005 125-005 145-010 150-010 200-010 250-020 300-020		1 1.2 1.25 1.45 1.5 2 2.5 3			2.5	0.05 0.05 0.05 0.1 0.1 0.1 0.2	11.6		0.035		• • • • • •	• • • • • •	SIGCR12
		GC12L	100-005 120-005 125-005 145-010 150-010 200-010 250-020 300-020	1	1 1.2 1.25 1.45 1.5 2 2.5 3	2.2	5.4	3.5	0.05 0.05 0.05 0.1 0.1 0.1 0.2	11.6	4.7	- 0.025	+ 0.025	• • • • • •	• • • • • •	SIGCL12
D1 -	-W1	GC08R	100-050R 200-100R	1	1 2	1.5	3.5	2.7	0.5 1	7.7	3.4	- 0.025	+ 0.025	•	•	SIGCR08
	INST	GC10R	100-050R 200-100R	1	1 2	2.2	4.4	3.5	0.5	9.6	4.7	- 0.025	+ 0.025	•	•	SIGCR10
	ompleto RE	GC12R	100-050R 200-100R	1	1 2	2.2	5.4	3.5	0.5 1	11.6	4.7	- 0.025	+ 0.025	•	•	SIGCR12

Mostrado versão à direita CDX exibe a profundidade de canal disponível. Condições de corte recomendadas 🕒 G144

SIGC Barra excellent bar (Canal interno)

Mostrado versão à direita | Inserto direito para porta-ferramenta direito, inserto esquerdo para porta-ferramenta esquerdo.

Dimensões do porta-ferramenta

G

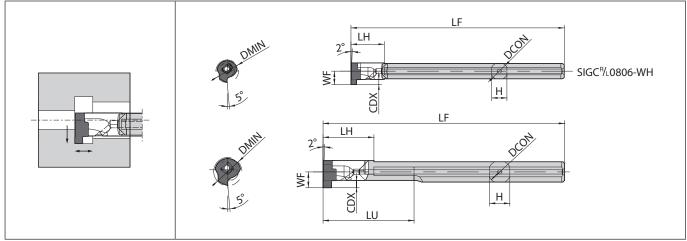
Canal

Externo

Interno

Face

Dillic	insoes do porte	<i>a</i> 10	-110	alli	CII	ta								
												Peças de	reposição	
	Descrição				ſ	Dime	nsão	(mm)		e refrigeração	Parafuso	Chave	Insertos aplicáveis G75
		R	L	DMIN	DCON	XO	Н	LH	LF	WF	Furode			
SIGC [®] /L	0812-EH	•	•	8	12	1.5	11	18	100	4.1	Sim	SB-2270T%	FT-7	GC08 ^F /L
SIGC [®] /L	1016-EH	•	•	10	16	2.2	15	21	100	5	Sim	SB-3070T [™] /∟	FT-8	GC10 [₽] /∟
SIGC [®] /L	1216-EH	•	•	12	16	2.2	15	25	110	6	Sim	SB-3070T ^P /L	FT-8	GC12 [₽] /∟


Instalação do inserto

Use ar comprimido ou outras medidas para remover cavacos do alojamento do inserto. Instale o inserto no porta-ferramenta assegurando-se que a parte inferior tenha contato com a superfície do porta-ferramenta.

Mantendo o inserto assentado, aperte o parafuso de fixação com torque apropriado. Torque de aperto recomendado : 0,8 N·m (SB-2270 T^{R}/L), 1,2 N·m (SB-3070 T^{R}/L) Parafuso de fixação esquerdo para porta-ferramenta versão esquerda

SIGC Barra com haste de metal duro (Canal interno)

Mostrado versão à direita | Inserto direito para porta-ferramenta direito, inserto esquerdo para porta-ferramenta esquerdo.

Dimensões do porta-ferramenta

													Peças de	reposição	
	Descrição	Disp bilio	oni- lade			Dir	nens	ão (m	ım)			e refrigeração	Parafuso	Chave	Insertos aplicáveis
		R	L	DMIN	DCON	XO	Н	LH	LF	LU	WF	Furo de			
SIGC [®] /L	0806-WH	•	•	8	6	1.5	5.4	12	75	-	4.8	Sim	SB-2270T%	FT-7	GC08 ^R /L
SIGC [®] /L	1008-WH-L85	•	•	10	8	2.2	7.2	18	85	32	E 6	Sim	SB-3070T ^R /L	FT-8	GC10º/∟
	1008-WH-L100	•		10	°	2.2	7.2	10	100	45	3.0	SIIII	SB-3070TR	F1-0	GC107L
SIGC [®] /L	1210-WH-L95	•		12	10	2.2	0.3	10	95	32		C:	CD 2070TR/	FT 0	CC138/
	1210-WH-L110	•	•	12	10	2.2	9.2	18	110	45	6.6	Sim	SB-3070T [®] /L	FT-8	GC12 [™]

Instalação do inserto

Use ar comprimido ou outras medidas para remover cavacos do alojamento do inserto. Instale o inserto no porta-ferramenta assegurando-se que a parte inferior tenha contato com a superfície do porta-ferramenta.

Mantendo o inserto assentado, aperte o parafuso de fixação com torque apropriado. Torque de aperto recomendado : 0,8 N·m (SB-2270T^P/_L), 1,2 N·m (SB-3070T^P/_L) Parafuso de fixação esquerdo para porta-ferramenta versão esquerda

GC**R-***	GC**L-***
Parafuso	Parafuso
Direito	Esquerdo
Porta-ferramenta : SIGCR	Porta-ferramenta : SIGCL
Parafuso de fixação : SBTR	Parafuso de fixação : SBTL

Luvas aplicáveis

Tamanho da haste (Diâm. do furo.: mm)	06 (6 mm)	08 (8 mm)	10 (10 mm)	12 (12 mm)	16 (16 mm)
Descrição do porta-ferramenta	SIGC ^R / _L 0806-WH	SIGC ^F /L 1008-WH-L85 SIGCR 1008-WH-L100	SIGCR 1210-WH-L95 SIGC ^P /∟ 1210-WH-L110	SIGC ^P /∟ 0812-EH	SIGC ^R /∟ 1016-EH SIGC ^R /∟ 1216-EH
Luva SH (para barras de torneamento interno)	SH 06	SH 08	SH 10	SH 12	SH 16
Luva SHC (com passagem para refrig.)	_	SHC 08	SHC 10	SHC 12	SHC 16
Luva SHA	-	SHA 08	SHA 10	SHA 12	-
Luva EZH (para barras EZ Bar)	EZH 06ST/CT/HP	EZH 08ST/CT/HP	_	-	-

^{*} Remova o pino de posicionamento ao montar SIGC na luva EZH-CT/HP A função de posicionamento não está disponível

GE

Externo

Interno

Face

			Açı	carbono	/ Aço liga								©		0	Р
				inoxidáv									ಅ ಆ	1		М
				ro fundid										ල	Ш	K
				tais não f										•		N .
			_	as de titâ		IIDC)								•		S
			-	teriais du teriais du									0	-	H	Н
			IVIC	teriais du	103 (40111		ensão (r	mm)			Tolerâno	cia (mm)	Met		Cermet	
ln:	serto	Descrição	N° de arestas	CW	CDX	S	D1	RE	INSL	W1	CW min.	CW max.	PR1025 QAA Inp	-	-	Porta-ferramenta aplicável • G81~G83
		GER 100-005A 120-005A 125-005A 150-010A 200-010A GEL 100-005A 120-005A	2	1 1.2 1.25 1.5 2 1 1.2	1.5	2.58	2.5	0.05 0.05 0.05 0.1 0.1 0.05 0.05	6.5	6.69	- 0.025	+ 0.025		•	•	SIGER0808A-EH SIGER0808A-WH
	WI .	125-005A 125-005A 150-010A 200-010A		1.25 1.5 2				0.05 0.05 0.1 0.1								SIGEL0808A-EH SIGEL0808A-WH
	22 COMA OLOS S REL COMA OLOS S 2-arestas	GER 100-005B 120-005B 125-005B 145-010B 150-010B 200-010B 250-020B 300-020B	. 2	1 1.2 1.25 1.45 1.5 2 2.5 3	2.2	3.18	2.7	0.05 0.05 0.05 0.1 0.1 0.1 0.2 0.2	8.2	8.46	- 0.025	+ 0.025			•	SIGERB-EH SIGERB-WH SIGERB-WH-90
		GEL 100-005B 120-005B 125-005B 145-010B 150-010B 200-010B 250-020B 300-020B		1 1.2 1.25 1.45 1.5 2 2.5 3				0.05 0.05 0.05 0.1 0.1 0.1 0.2						•	•	SIGELB-EH SIGELB-WH
	2 WI WI WI DOS S	GER 100-050AR 200-100AR	2	1 2	1.5	2.58	2.5	0.5	6.5	6.69	- 0.025	+ 0.025	- •	•		SIGER0808A-EH SIGER0808A-WH
	2-arestas / Raio completo	GER 100-050BR 200-100BR	2	1 2	2.2	3.18	2.7	0.5	8.2	8.46	- 0.025	+ 0.025		•		SIGERB-EH SIGERB-WH SIGERB-WH-90
	GEN SO COLOR - TO COLOR - TO COLOR GEN SO COLOR - TO COLOR - TO COLOR GEN SO COLOR GEN SO COLOR - TO COLOR GEN SO COLOR	GER 150-010CM 200-010CM 250-020CM 300-020CM 350-020CM	2	1.5 2 2.5 3 3.5	2.5	4.05	2.8	0.1 0.1 0.2 0.2 0.2	11.48	5.8	- 0.05	+ 0.05				SIGERC-EH SIGERC-WH SIGERC-WH-90
	despectation of the second of	GER 150-010DM 200-010DM 230-020DM 250-020DM 300-020DM 350-020DM 400-020DM	2	1.5 2 2.3 2.5 3 3.5 4	3 3.2 3.2 3.2 4.5 4.5	5.05	3.4	0.1 0.2 0.2 0.2 0.2 0.2	16.44	6.8	- 0.05	+ 0.05				SIGER2020D-EH
Mostrado versão	GERSON SOCIAL-150 COSCIM GERSON COSCIAL-150 COSCIAL CERSON COSCIAL-150 COSCIAL 2-arestas / Quebra-cava- co moldado	350-020DM		3.5	4.5			0.2		C	d: = 2 = =	de esua	_ _ _			dadas (

Mostrado versão à direita CDX exibe a profundidade de canal disponível.

Condições de corte recomendadas 🌒 G145

lacktriangle: Item standard $\ \square$: Será excluído no próximo catálogo

GE Aço carbono / Aço liga 4 M Aço inoxidável Metais não ferrosos N Ligas de titânio S Materiais duros (~ 40HRC) • Н Materiais duros (40HRC ~) Tolerância Metal Dimensão (mm) (mm) duro No de arestas Porta-ferramenta PVD aplicável Inserto Descrição CW CW CW CDXS D1 RE INSL W1 ● G81~G83 PR1025 PR1225 GW15 TN6020 min. max. GER 100-005C 1 0.05 • 120-005C 1.2 0.05 • 125-005C 1.25 0.05 140-005C 1.4 0.05 145-010C 1.45 • 0.1 150-010C • 1.5 0.1 SIGER....C-EH 170-010C SIGER....C-WH 1.7 0.1 • SIGER....C-WH-90 185-010C 1.85 0.1 195-010C 1.95 0.1 • • 200-010C • • • 2 0.1 250-020C 2.5 0.2 • • • 2 2.5 4.05 3.1 11.48 5.8 - 0.03 + 0.03300-020C • 3 0.2 350-020C • • 3.5 0.2 GEL 100-005C 0.05 1 2-arestas • 120-005C 1.2 0.05 125-005C 1.25 0.05 • 145-010C 1.45 • 0.1 SIGEL....C-EH 150-010C 1.5 0.1 • SIGEL....C-WH 200-010C 2 0.1 • 250-020C • 2.5 0.2 300-020C 0.2 3 350-020C • 3.5 0.2 • GER 100-005D 1 0.05 140-005D 0.05 • 1.4 2.5 145-010D 1.45 2.5 0.1 150-010D 1.5 3 0.1 170-010D 1.7 3 0.1 185-010D 1.85 3 0.1 • 195-010D 1.95 3 0.1 200-010D 2 3.2 0.1 • SIGER2020D-EH 225-010D 2.25 3.2 0.1 230-020D 2.3 3.2 0.2 250-020D 2.5 3.2 0.2 280-020D 2.8 3.2 0.2 300-020D 3 4.5 0.2 • 330-020D 2 - 0.03 | + 0.03 | - 3.3 4.5 5.05 3.6 0.2 16.44 6.8 350-020D 3.5 4.5 0.2 • 400-020D • 4.5 0.2 4 GEL 100-005D 1 2.5 0.05 • 140-005D 0.05 1.4 2.5 2-arestas • 145-010D 1.45 2.5 0.1 150-010D 1.5 3 0.1 • 170-010D 1.7 3 0.1 200-010D 2 3.2 0.1 SIGEL2020D-EH 225-010D 2.25 0.1 • 3.2 230-020D 2.3 3.2 0.2 • 250-020D 2.5 3.2 0.2 • • 300-020D 3 0.2 4.5 400-020D 4 4.5 0.2 • • GER 200-100CR 2 1 SIGER C-FH 250-125CR 2 2.5 2.5 4.05 3.1 1.25 11.48 5.8 0.03 +0.03• SIGER....C-WH(-..) • 300-150CR 3 1.5 GER 200-100DR 2 • 3.2 1 2 5.05 16.44 +0.03SIGER2020D-EH 3.6 6.8 0.03 • 2-arestas / Raio completo 300-150DR 3 4.5 1.5

Mostrado versão à direita

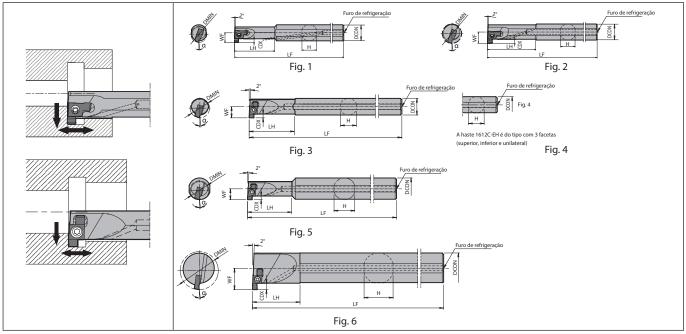
CDX exibe a profundidade de canal disponível.

Condições de corte recomendadas 🌒 G145

GE/GER

Externo

Interno


Face

			Açı	carbono	/ Aço ligi	 1							(b)		0	Р
				inoxidáv									ಲ ಆ			М
			Fer	ro fundid	0									9		K
				tais não f										•		N
			_	as de titâ										•		S
			_	teriais du									0	-	\blacksquare	Н
			IVIa	teriais du	ros (40HI						Toler	ância	Met	al	net	
						Dim	ensão (ı	nm)			(m	ım)	dur	0	Cermet	
			No de arestas										PVD	-	-	Porta-ferramenta
ln:	serto	Descrição	o de a	CW	CDX	S	D1	RE	INSL	W1	CW	CW				aplicável ⊕ G81
			Ż		CDA		.		52		min.	max.	PR1025	3W15	N6020	0 221
															_	
	GENERAL SOLUTION AND ADDRESS OF THE PROPERTY O	GER 150-010EM 200-010EM 250-020EM 300-020EM 350-020EM 400-020EM 450-020EM 500-020EM	2	1.5 2 2.5 3 3.5 4 4.5 5	3 3.2 4.5 4.5 5.5 5.5 6.5 6.5	5.55	4.4	0.1 0.2 0.2 0.2 0.2 0.2 0.2	21.66	9.54	- 0.05	+ 0.05				SIGERE-EH
	27 W1 CON SECURIO SECURIO CON SECURIO SECURIO CON SECURIO CON SECURIO	GER 100-005E 150-010E 170-010E 185-010E 195-010E 200-010E 225-010E 230-020E 250-020E 280-020E 330-020E 350-020E 400-020E 450-020E 460-020E 500-020E	2	1 1.5 1.7 1.85 1.95 2 2.25 2.3 2.5 2.75 2.8 3 3.3 3.5 4 4.3 4.5 4.6 5	2.5 3 3 3 3.2 3.2 4.5 4.5 4.5 5.5 5.5 6.5 6.5	5.55	4.6	0.05 0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	21.66	9.54	-0.03	+0.03		••••••••	•••••	SIGERE-EH
Mostrado versão :	CHARGO S S CHARGO S CH	GEL 100-005E 150-010E 170-010E 185-010E 195-010E 200-010E 230-020E 250-020E 280-020E 300-020E 330-020E 350-020E 400-020E 500-020E		1 1.5 1.7 1.85 1.95 2 2.3 2.5 2.8 3 3.3 3.5 4 5	2.5 3 3 3 3.2 3.2 4.5 4.5 4.5 5.5 5.5 6.5			0.05 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2						•	• • •	SIGELE-EH

CDX exibe a profundidade de canal disponível.

Condições de corte recomendadas
G145

SIGE Barra excellent bar (Canal interno)

Mostrado versão à direita | Inserto direito para porta-ferramenta direito, inserto esquerdo para porta-ferramenta esquerdo.

Dimensões do porta-ferramenta

														Peças de	reposição		
	Descrição		oni- lade		I	Dime	nsão	(mm)		de refrig		Parafuso	Chave	Chave	Chave	Insertos aplicáveis G78~G80	
		R	L	DMIN	DCON	XO	Н	LH	LF	WF	Furo d					J	
SIGE ^R /L	0808A-EH	•	•	8	8	1.5	7.2	20	100	4.8	Sim	1	SB-2045TRN	-	-	FT-6	GE ^R /∟A / AR
SIGE [®] /L	1010B-EH	•	•	10	10	2.2	9	25	125	6.2	Sim	1	SB-2255TR	_	DT-7	_	GE ^R /∟B
	1210B-EH	•	•	12	10	2.2	_	30	123	7	ווווכ	2	JU-22JJIN		<i>υ</i> ι-7	_	GE ^R /∟BR
SIGE [®] /L	1412C-EH	•	•	14	12		11.4	33	150	8		3					GE ^R /LC
	1612C-EH	•	•	16	12	2.5	11.4	20	130	8.5	Sim	4	SB-2570TR	-	-	FT-8	GE ^R /LCM
	1616C-EH	•	•	10	16		15	36	160	9		5					GE₹/LCR
SIGE [®] /L	2020D-EH	•	•	20	20	4.5	19	40	180	12.1	Sim	5	SB-3080TR	-	-	FT-10	GE ^R /LD / DM / DR
SIGE [®] /L	2525E-EH	•	•	25	25		24	45	200	15.6		5					CER/ E
	3232E-EH	•	•	32	32	6.5	30.4	55	220	19	Sim	5	SB-4085TR	FT-15	-	-	GE™L…E GE™L…EM
	4032E-EH	•	•	40	32		30.4	45	250	23		6					GL /LLIVI

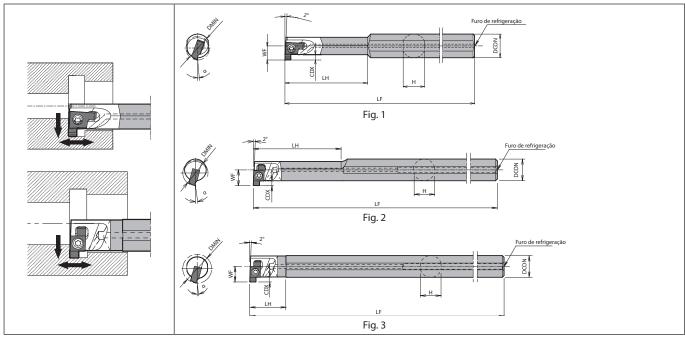
CDX indica a distância entre o porta-ferramenta e a aresta de corte. Profundidade de canal disponível: "CDX" do inserto.

Luvas aplicáveis 🌒 **F149, F150**

Características

O design de porta-ferramentas com fixação do inserto por parafuso possibilita um excelente escoamento do cavaco

Controle de cavaco econômico com um quebra-cavaco moldado


A aresta de corte está protegida da face de contato

Diâmetro de furo mínimo de 8mm com um design de 2 arestas

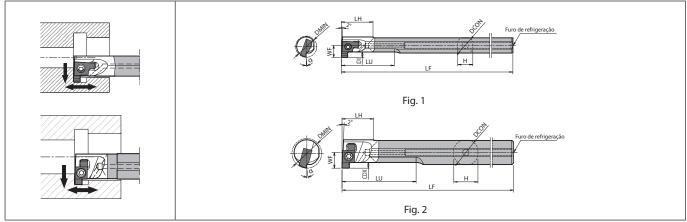
SIGE Barra com haste de metal duro (Canal interno)

Mostrado versão à direita | Inserto direito para porta-ferramenta direito, inserto esquerdo para porta-ferramenta esquerdo.

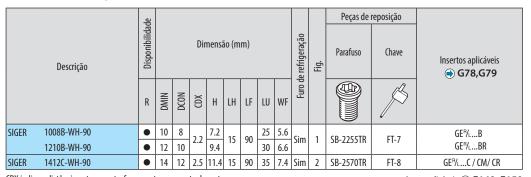
Dimensões do porta-ferramenta

													Pe	ças de reposiç	ão	
	Descrição	Disp bilio	oni- lade			Dime	nsão	(mm))		de refrigeração	Fig.	Parafuso	Chave	Chave	Insertos aplicáveis (F) G78,G79
		R	L	DMIN	DCON	XO	Н	LH	LF	WF	Furo d					
SIGE [®] /L	0808A-WH	•	•	8	8	1.5	7.2	28	125	4.8	Sim	1	SB-2045TRN	-	FT-6	GE ^R /∟A / AR
SIGE [®] /L	1010B-WH	•	•	10	10	2.2	9	35	125	6.2	Sim	1	SB-2255TR	DT-7		GE [®] /∟B
	1210B-WH	•	•	12	10	2.2	9	45	140	7	SIIII	<u>'</u>	3D-22331K	DI-7	-	GE%∟…BR
SIGE [®] /L	1412C-WH	•	•	14	12	2.5	11 /	50	150	8.7	Cim	2	SB-2570TR		FT-8	GE∜∟C GE∜∟CM
	1612C-WH	•	•	16	12	2.5	11.4	20	180	8.5	Sim	3	3D-23/UIK	-	Γ1-δ	GE ^P /LCR

CDX indica a distância entre o porta-ferramenta e a aresta de corte. Profundidade de canal disponível: "CDX" do inserto.


Luvas aplicáveis 🌒 F149, F150

Externo Interno


Face

SIGE Barra com haste de metal duro (Canal interno / para torno automático)

Mostrado versão à direita | Inserto direito para porta-ferramenta direito.

Dimensões do porta-ferramenta

CDX indica a distância entre o porta-ferramentas e a aresta de corte.

LH mostra o comprimento mínimo em balanço.

Luvas aplicáveis
F149, F150

Insertos aplicáveis e ângulo de saída (α) após instalação do inserto

		Insertos aplicáve	eis & Ângulo de sa	ı́da (α) após instalação do inserto	
Descrição (do porta-ferramenta	Quebra-cavaco retificado	α	Quebra-cavaco moldado	α
SIGE ^R /L	0808A-EH	GE ^R /L100-005A~GE ^R /L200-010A GER100-050AR~GER200-100AR	5°	-	-
	1010B-EH	GE ^R / _L 100-005B~GE ^R / _L 300-020B	5°		
	1210B-EH	GER100-050BR~GER200-100BR	,	-	_
	1412C-EH	GE ^R /₁100-005C∼GE ^R /₁350-020C			
	1612C-EH	GE'7L100-005C~GE'7L350-020C GER200-100CR~GER300-150CR	8°	GER150-010CM~GER350-020CM	10°
	1616C-EH				
	2020D-EH	GE ^R /_100-005D~GE ^R /_400-020D GER200-100DR~GER300-150DR	9°	GER150-010DM~GER400-020DM	10°
	2525E-EH				
	3232E-EH	GE ^R /L100-005E~GE ^R /L500-020E	10°	GER150-010EM~GER500-020EM	10°
	4032E-EH				
SIGE ^R / _L	0808A-WH	GE ^P / _L 100-005A~GE ^P / _L 200-010A GER100-050AR~GER200-100AR	5°	-	-
	1010B-WH				
	1210B-WH	GE ^R / _L 100-005B~GE ^R / _L 300-020B	5°		
	1008B-WH-90	GER100-050BR~GER200-100BR)	-	-
	1210B-WH-90				
	1412C-WH	GE ^R /, 100-005C~GE ^R /, 350-020C			
	1612C-WH	GE'7L 100-005C~GE'7L350-020C GER200-100CR~GER300-150CR	8°	GER150-010CM~GER350-020CM	10°
	1412C-WH-90				

α indica o ângulo de saída no centro da largura da aresta após a instalação do inserto.

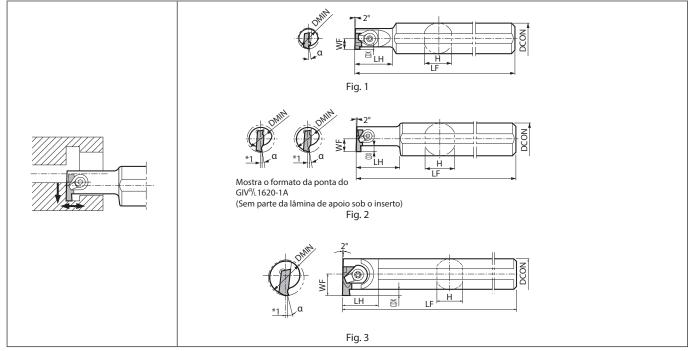
GV

Externo Interno

Face

		Aço	carbono	/ Aço liga	n						•	9			P
		_	inoxidáv								•	<u>ٿ</u>	T		М
		Fer	ro fundid	0								•	•		K
		Me	tais não f	errosos								•	•		N
		Lig	as de titâ	nio								•	•		S
		-		ros (~ 40								0	1	Ш	Н
		Ma	teriais du	ros (40HF	RC ~)										
					Dimens	ão (mm)				ância m)		letal Iuro		Cer- net	
Inserto	Descrição	Nº de arestas							CW	CW	PV	D .	-	-	Porta-ferramenta aplicável
		P∘N	CW	CDX	S	RE	INSL	W1	min.		PR1 225	PR930	TCAON	TC60M	● G86~G88
CDX RE CW-0.013	GVR 100-020SS 125-020SS 145-020SS 200-020SS 250-020SS 300-020SS	1	1 1.25 1.45 2 2.5 3	2.3	3	0.2	9	3.6	- 0.03	+ 0.03	• • • • •			• • • • •	GIVR1216-1SS
1 aresta	GVL 100-020SS 125-020SS 145-020SS 200-020SS 250-020SS 300-020SS	•	1 1.25 1.45 2 2.5 3	2.3	3	0.2	9	3.0	-0.03	T 0.03	• • • • •				GIVL1216-1SS
CDX RE CW=0.03	GVR 100-020S 125-020S 145-020S 185-020S 200-020S 250-020S 340-020S	1	1 1.25 1.45 1.85 2 2.5 3.4	2.2	4	0.2	11		0.03		• • • • • •			• • • • •	GIVR1420-1S GIVR1412-1SE
1 aresta	GVL 100-020S 125-020S 145-020S 185-020S 200-020S 250-020S 340-020S	1	1 1.25 1.45 1.85 2 2.5 3.4	2.3	4	0.2	11	4	- 0.03	+ 0.03	•				GIVL1420-1S GIVL1412-1SE
S INSI CWEON	GVR 100-020A 125-020A 145-020A 185-020A 200-020A 250-020A 300-020A 340-020A	2	1 1.25 1.45 1.85 2 2.5 3	2.3	5	0.2	12	4	0.02	+ 0.03	• • • • • •				GIVR1620-1A GIVR1612-1AE GIVR1616-1AW
2-arestas Mostrado versão à direita	GVL 100-020A 125-020A 145-020A 185-020A 200-020A 250-020A 300-020A 340-020A	2	1 1.25 1.45 1.85 2 2.5 3	2.3	J	0.2	12				• • • • •				GIVL1620-1A GIVL1612-1AE GIVL1616-1AW

Mostrado versão à direita CDX exibe a profundidade de canal disponível.


GV

			Acc	o carbono	/ Aço ligi	a							(4)				P
			-	o inoxidáv								•	0				M
			_	ro fundid									(•			K
				tais não f								Н	-	,	Н	•	N
														3			
				as de titâ										4		•	S
					iros (~ 40								0	+	Ш	_	Н
			Ma	teriais du	iros (40HI	RC ~)						Ш	\perp		Ц		
						Dimens	ão (mm)	١			ância		etal		er-	2	
)	uo (IIIII)			(m	ım)	d	uro	m	et	_	
			N° de arestas									PV	n .		_	_	Porta-ferramenta
In	serto	Descrição	are									ļ.,		_	,		aplicável
		,	o de	CW	CDX	S	RE	INSL	W1	CW	CW						€ G86~G88
			-							min.	max.	1122	R930	TC40N	N09	<u>8</u>	Ŭ
												F.	= -	۲ ۲	⋍	회	
																+	
		GVR 145-020B		1.45	2.8							•	•		•		
		185-020B		1.85	2.8							•	•		•		GIVR2025-1B
		200-020B		2	3.2							•	•		•		GIVR2016-1BE GIVR2020-1BW
		230-020B		2.3	3.2												GIVIIZOZO IDW
		250-020B 280-020B		2.5	3.2		ļ					H			H		
		300-020B		2.8	3.2 4.2							H			Ĭ		GIVR2025-2B
	CDX 2° RE	340-020B		3.4	4.2												GIVR2016-2BE
A CONTRACTOR OF THE PARTY OF TH	INSL DE TO	400-020B	2	4	4.2	5.5	0.2	15	4.5	- 0.03	+ 0.03						GIVR2020-2BW
		GVL 145-020B	_	1.45	2.8	3.5	0.2	13	۲.5	0.03	1 0.03					\dashv	
		185-020B		1.85	2.8										•		GIVL2025-1B
	2-arestas	200-020B		2	3.2							•	•		•		GIVL2025-1B GIVL2016-1BE
		230-020B		2.3	3.2							•	•		•		GIVL2020-1BW
		250-020B		2.5	3.2							•	•	•	•		
		280-020B		2.8	3.2									•			GIVL2025-2B
		300-020B		3	4.2							•	•	•	•		GIVL2025-2B GIVL2016-2BE
		400-020B		4	4.2												GIVL2020-2BW
																\dashv	4110
		GVR 280-020C		2.8	4.5							•			•		GIVR1C GIVR1CE
		300-020C		3	4.5										•		GIVR1CW
		340-020C		3.4	5.5		ļ			ļ							dividual lett
		400-020C		4	5.5										Ä		GIVR2C
	CDX	430-020C 460-020C		4.3 4.6	6.3										_		GIVR2CE
100	2° RE CW±0.03	500-020C		5	6.3							H					GIVR2CW
	INSL RE CW20.03	GVL 280-020C	2	2.8	4.5	6.5	0.2	21	5.8	- 0.03	+ 0.03					\dashv	CIVIL 16
		300-020C		3	4.5												GIVL1C GIVL1CE
	2-arestas	340-020C		3.4	5.5							•	•		•		GIVL1CW
		400-020C		4	5.5							•	•		•	***	
		430-020C		4.3	6.3									•	•		GIVL2C
		460-020C		4.6	6.3												GIVL2CE
		500-020C		5	6.3							•	•		•		GIVL2CW
	CDV as 6												+			\dashv	GIVR1620-1A
	0X 2°%	GVR 145-020A	1	1.45	2.3	5	0.2	12	4	- 0.03	+ 0.03				:	•	GIVR1612-1AE
The state of	NSL	200-020A		2												•	GIVR1616-1AW
	CW±0.03	CVD 200 020D		,												•	GIVR2025-1B
		GVR 200-020B	1	2.5	3.2	5.5	0.2	15	4.5	- 0.03	+ 0.03				:	•	GIVR2016-1BE
	1 aresta	250-020B		2.5													GIVR2020-1BW
																	CIMPACOO ::
		GVR 200-100AR		2			1					•	•		•		GIVR1620-1A GIVR1612-1AE
		250-125AR	_	2.5	33	_	1.25	4.5		0.00		•	•		•		GIVR1616-1AW
	CDX	300-150AR	2	3	2.3	5	1.5	12	4	- 0.03	+ 0.03	•	•		•		
		GVL 200-100AR		2]	1					•	•			T	GIVL1620-1A
	INSL CW±0.03																GIVL1612-1AE GIVL1616-1AW
	~ 1 / 1/1 / 1/1												+			\dashv	GIVR2025-1B
	2 avector / Daily assertion																GIVR2016-1BE
	2-arestas / Raio completo	GVR 200-100BR	. 2	2	3.2	5.5	1 1.5	15	4.5	- 0.03	+ 0.03	•	•		•		GIVR2020-1BW
		300-150BR	4	3	4.2	د.د	1.5	دا	4.3	- 0.03	T V.U3	•	•		•		GIVR2025-2B
																	GIVR2016-2BE
Marker di	\ \ \ \																GIVR2020-2BW
Mostrado versão	a gireita									Condi	مے م	e c	rtc	roc	Λm	on	dadas 🖨 G146

Mostrado versão à direita CDX exibe a profundidade de canal disponível.

Condições de corte recomendadas 🌒 G146

GIV Barra com haste de aço (Canal interno)

Mostrado versão à direita | Inserto direito para porta-ferramenta direito, inserto esquerdo para porta-ferramenta esquerdo.

Dimensões do porta-ferramenta

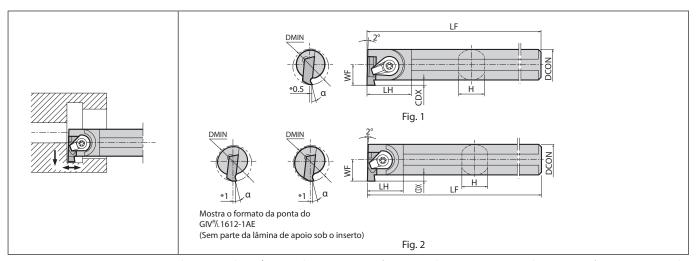
													Pe	ças de reposiçã	ão		
	Descrição		ooni- dade			Dimens	ão (n	nm)			Fig.	Conjunto do grampo	Conjunto do grampo	Chave	Chave	Chave	Insertos aplicáveis (3) G84,G85
		R	L	DMIN	DCON	CDX	Н	LH	LF	WF							
GIV ^R /L	1216-1SS	•	•	12	16	2.2	15	20	150	6	1	CPS-4V	-	-	-	FT-10	GV [₽] /∟020SS
GIV ^R /L	1420-1S	•	•	14	20	2.2	19 24 150 7		1	CPS-5F	-	-	FT-15	-	GV ^F /∟020S		
GIV ^R /L	1620-1A	•	•	16	20	2.2	19	28	160	8	2	CPS-5V	-	-	FT-15	-	GV ^R /LA(R)
GIV ^R /L	2025-1B	•	•	20	25	*1 2.8	23	35	180	10	2	CPS-5V	_		FT-15		GV ^R /∟145 ~ 250B(R)
	2025-2B	•	•	20	23	*2 3.2	23	33	100	10	2	CF 3-3 V	-	-	F1-13	_	GV ^R /∟280 ~ 400B(R)
GIV ^R /L	2532-1C	•	•	25		*3 4.5		43	200	12.5							GV ^F /∟280 ~ 340-020C
	2532-2C	•	•	23	32	*4 5.5	30	43	200	12.3	2	_	CPS-6V	LW-3			GV [™] /∟400 ~ 500-020C
	3232-1C	•	•	32	٥٧	*3 4.5	50	52	220	16		-	Ct 2-01	LVV-3	-	_	GV [™] /∟280 ~ 340-020C
	3232-2C	•	•	32		*4 5.5		JZ	220	10							GV ^F /∟400 ~ 500-020C
GIV ^R /L	4032-1C	•	•	40	32	*3 4.5	30	13	250	21	3	. (CPS-6V	LW-3	IW-3 -		GV [™] /∟280 ~ 340-020C
	4032-2C	•	•	40	*45.5 30 43	43 2	230	22.2	ر	_	(1.2-0)	LVV-3			GV ^F /∟400 ~ 500-020C		

GIV foi projetado para instalação a altura da aresta de corte 1 mm acima da altura central.

CDX exibe a profundidade de canal disponível.

Caso precise de uma das profundidades de canal do inserto especificadas nas observações de *1 a *4, modifique a dimensão CDX do porta-ferramenta.

Face


^{*1.} GV $^{\text{H}}$ 200 \sim 250-020B Pode ser usado com uma profundidade de canal de até 3.2mm.

^{*2.} GV $^{\text{P}}$ $\!$ $\!$ $\!$ $\!$ $\!$ $\!$ $\!$ $\!$ $\!$ $\!$ 400-020B Pode ser usado com uma profundidade de canal de até 4.2mm.

^{*3.} GV % 340-020C Pode ser usado com uma profundidade de canal de até 5.5 mm.

^{*4.} $GV^R/_430\sim500-020C$ Pode ser usado com uma profundidade de canal de até 6.3mm.

GIV-E Barra excellent bar (Canal interno)

Mostrado versão à direita | Inserto direito para porta-ferramenta direito, inserto esquerdo para porta-ferramenta esquerdo.

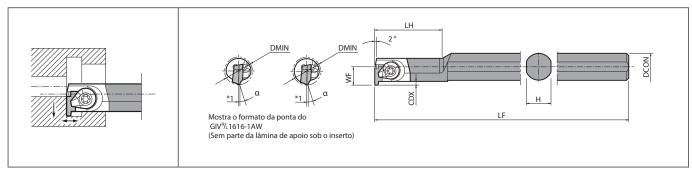
Dimensões do porta-ferramenta

													Peças de	reposição		
	Descrição	Disp	oni- lade			Dimens	são (n	nm)			Fig.	Conjunto do grampo	Conjunto do grampo	Chave	Chave	Insertos aplicáveis (3) G84,G85
		R	L	DMIN	DCON	CDX	Н	LH	LF	WF						g .
GIV ^R /L	1412-1SE	•	•	14	12	1.7	11.4	18	150	7.7	1	CPS-5F	-	-	FT-15	GV [₽] /∟020S
GIV ^R /L	1612-1AE	•	•	16	12	2.2	11.4 19		150	8.2	2	CPS-5V	-	-	FT-15	GV ^R /LA(R)
GIV ^R /L	2016-1BE	•	•	20	16	*1 2.8	15.2	20	180	11.2	2	CPS-5V	_		FT-15	GV ^R /∟145 ~ 250B(R)
	2016-2BE	•	•	20	10	*5 3.2	13.2	19	100	11.7		Cr3-3V	-	-	F1-13	GV ^R /L280 ~ 400B(R)
GIV ^R /L	2520-1CE	•	•	25	20	*6 4.5	19	25	200	14.5						GV ^R /∟280 ~ 340-020C
	2720-2CE	•	•	27	20	*4 5.5	19	23	200	16.2						GV ^R /∟400 ~ 500-020C
	3225-1CE	•	•	32	25	*7 4.5	24	24	220	17.5	2		CPS-6V	LW-3		GV ^R /L280 ~ 340-020C
	3225-2CE	•	•	32	23	*4 5.5	24	24	220	18.7	2	2 -	(r3-0V	LVV-3	-	GV [₽] /∟400 ~ 500-020C
	4032-1CE	•	•	40	22	*7 4.5	21	20	240	21						GV ^R /∟280 ~ 340-020C
	4032-2CE	•	•	40 32 *4 5.5 31		31 29	29	240	22.2						GV [₽] /∟400 ~ 500-020C	

GIV-E foi projetado para instalação a altura da aresta de corte 1 mm acima da altura central. (0.5mm para GIV^P/L1612-1AE) CDX exibe a profundidade de canal disponível.

*1. GV⁹/L 200~250-020B pode ser usado com uma profundidade de canal de até 3.2mm.

*4. GV⁹/L 430~500-020C pode ser usado com uma profundidade de canal de até 6.3mm.


*5. GV⁹/L 300~400-020B pode ser usado com uma profundidade de canal de até 3.8mm. (Ao usar GIV⁹/L 2016-2BE)

*6. GV⁹/L 340-020C pode ser usado com uma profundidade de canal de até 4.7mm. (Ao usar GIV⁹/L 2520-1CE)

*7. GV⁹/L 340-020C pode ser usado com uma profundidade de canal de até 5.3mm. (Ao usar GIV⁹/L 3225-1CE, GIV⁹/L 4032-1CE)

Caso precise de uma das profundidades de canal do inserto específicadas nas observações de *1 a *7, modifique a dimensão CDX do porta-ferramenta.

GIV-W Barra com haste de metal duro (Canal interno)

Conjunto do

grampo

CPS-5V

CPS-5V

Mostrado versão à direita | Inserto direito para porta-ferramenta direito, inserto esquerdo para porta-ferramenta esquerdo.

Chave

LW-3

Chave

FT-15

FT-15

Insertos aplicáveis

● G84,G85

GV^R/∟145 ~ 250-...B(R)

 $GV^{R}/_{L}280 \sim 400-...B(R)$

GV^R/L280 ~ 340-020C

GV^R/∟400 ~ 500-020C

 $\mathsf{GV}^\mathsf{R}\!/_\mathsf{L}...$ -... $\mathsf{A}(\mathsf{R})$

Peças de reposição

Conjunto do

grampo

CPS-6V

Dimensões do porta-ferramenta

Descrição

1616-1AW

2020-1BW

2020-2BW

2525-1CW

2525-2CW

G	
_	

Externo

Interno

Face

GIV^R/L

GIV^R/L

GIV-W foi projetado para instalação a altura da aresta de corte 1 mm acima da altura central . CDX exibe a profundidade de canal disponível.

Disponi-

bilidade

R

16 | 16 | 2.2 | 15 | 48 | 175 | 10.6

• •

•

•

•

•

•

•

DCON

20 20

25 | 25

CDX | H | LH | LF | WF

*1 2.8

*2 3.2

*3 4.5

*⁴ 5.5

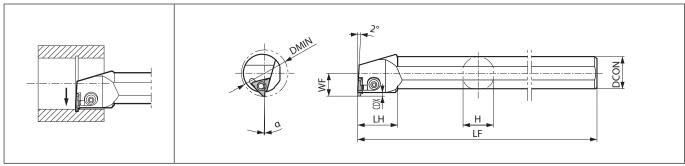
19 | 60 | 220 | 14.6

24

70 260 19.1

- *1. GV^R/, 200~250-020B pode ser usado com uma profundidade de canal de até 3.2mm.
- *2. GV%/.300 $\sim\!400$ -020B pode ser usado com uma profundidade de canal de até 4.2mm.
- *3. GV% 340-020C pode ser usado com uma profundidade de canal de até 5.5mm.
- *4. GV^R/L430~500-020C pode ser usado com uma profundidade de canal de até 6.3mm.

Caso precise de uma das profundidades de canal do inserto especificadas nas observações de *1 a *4, modifique a dimensão CDX do porta-ferramenta.


Dimensão (mm)

Insertos aplicáveis & Ângulo de saída (α) após instalação do inserto

	Descrição do inse	erto G84,G85	Ângu	llo de saída (α)
Descrição do porta-ferramenta	Canal geral (quadrado)	Canal de raio completo (redondo)	TC40N	TN90,TC60M PR930,PR1225 KW10
GIV ^R /∟1SS	GV ^R /L100~300-020SS	-	10°	15°
GIV ^R / _L 1S	GV ^R / _L 100~340-020S	-	10°	15°
GIV ^R /∟1SE	GV ^R / _L 100~340-020S	-	3°	8°
GIV ^R / _L 1A(□)	GV ^P / _L 100~340-020A	GV ^P /L200-100AR~300-150AR	3°	8°
GIV ^R / _L 1B(□)	GV ^R /∟145~250-020B	GV ^R / _L 200-100BR	4°	9°
GIV ^R / _L 2B(□)	GV ^R / _L 280~400-020B	GV ^R /L300-150BR	4	9
GIV ^R / _L 1C(□)	GV ^R /L280~340-020C	-	5°	10°
GIV ^R / _L 2C(□)	GV ^P /∟400~500-020C	-)	10

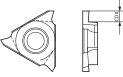
KIGBA (Canal interno / Canal raso)

Mostrado versão à direita | Inserto esquerdo para porta-ferramentas direito, inserto direito para porta-ferramenta esquerdo

Dimensões do porta-ferramenta

										Peças de	reposição	
Descrição		oni- lade			Dime	nsão	(mm))		Conjunto do grampo	Chave	Insertos aplicáveis G6~G12
	R	L	DMIN	DCON	CDX	Н	LH	LF	WF			
KIGBA ^R /L 3525-16	•	•	35	25	2.8	23	30	220	17.5	LGBA-16 ^L / _R S	FT-15	Tipo GBA32 ^L / _R
KIGBA ^R /L 4032-22	•	•	40	32	3	30	30	250	23	LGBA-22 ^L / _R S	FT-15	Tipo GBA43 ^L / _R

*CDX indica a distância entre o porta-ferramentas e a aresta de corte.


A profundidade de canal disponível depende do inserto.

KIGBA^P/∟ 3525-16 : CDX do inserto aplicável (GBA32)

4032-22 : CDX do inserto aplicável (GBA43) (1) 2.0 mm (CDX < 3.0 mm)

(2) 3.0 mm (CDX \geq 3.0 mm)

 $Conjunto\ do\ grampo: LGBA-\bigcirc LS\ para\ porta-ferramenta\ direito\ e\ LGBA-\bigcirc RS\ para\ porta-ferramenta\ esquerdo.$

Ângulo de saída (α) após instalação do inserto GBA

	GBA32 ^P /LOOO-OOO		GBA43 ^P /LOOO-OOO		GBA43 ^P /LOOO-OOOR (Raio com	pleto)
α	Classes do Inserto	α	Classes do Inserto	α	Classes do Inserto	Descrição do raio completo
	TN620, TN90, PV7040	-9°	KBN510, KBN525	+1°	TN620, TN90, PV7040 PR930, PR1215, PR1625, PR905	050R~150R
+1°	PR930, PR1215, PR1625, PR905 KPD001, KPD010	+1°	TN620, TC40N, TN90, PV7040, PR930, PR1215, PR1625, PR905		TN620, TN90, PV7040 PR930, PR1215, PR1625, PR905	200R
+11°	KW10		KPD001, KPD010	+5°	, , ,	
		+11°	KW10		KW10	050R~200R

BA-GM

Ängulo de saída (α) após instalação do inserto GB/										
Descrição do inserto										
GBA43 ^R /L150-020GM										
GBA43 ^P /L175-020GM										
ì										
GBA43 ^R /L265-030GM										
GBA43 ^P /L300-030GM										
ì										
GBA43 ^R /L400-040GM										

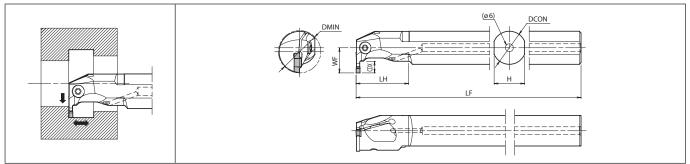
α indica o ângulo de saída no centro da largura da aresta após a instalação

Ângulo de saída (α) após instalação do inserto GBA-MY

_	
α	Descrição do inserto
	GBA43 ^R /∟175-020MY
+6°	ì
	GBA43 ^R /∟350-030MY
+5°	GBA43 ^F /L400-040MY

 α indica o ângulo de saída no centro da largura da aresta após a instalação do inserto.

GDM/GDG

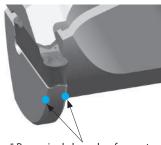

				Aço	carbono	/ Aço liga	a				9	¥	ෆ		•	0	Р
				Aço	inoxidáv	rel					0	٣	•	\neg	T		М
				Fer	ro fundid	0					•						K
				Me	tais não f	errosos								•			N
				Lig	as de titâ	nio								•			S
				Ma	teriais du	iros (~ 40	HRC)										Н
				Ma	teriais du	ros (40HF	RC ~)										п
						Dimens	ão (mm)			ância m)	Me	tal	du	ro	Ce		
In	serto		Descrição								P	VD		-	-		Porta-ferramenta aplicável
				Nº de arestas	CW	S	RE	INSL	CW min.	cw max.	PR1215	PR1225	PR1535	GW15	TN620	TN90	⊚ G91
		GDM	2013N-020GMI	2	2	4.3	0.2	13.5	- 0.03	+ 0.03	•	•	•		•		KGDI ^P /∟2
E E	8 8 8	GDM	3015N-040GMI	2	3	4.6	0.4	15.5	- 0.03	+ 0.03	•	•	•		•		KGDI ^R /∟3
23		GDM	4020N-040GMI	2	4	4.3	0.4	20	- 0.03	+ 0.03	•	•	•		•		KGDI [®] /∟4
	Uso geral	GDM	5020N-040GMI 5020N-080GMI	2	5	4.3	0.4 0.8	20	- 0.04	+ 0.04	•	•	•		•		KGDI™L4 KGDI™L5
	÷,, RE_	GDG	3015N-020GS	2	3	4.6	0.2	15.6	- 0.02	+ 0.02				•			KGDI ^F /L3
	20'	GDG	4020N-040GS	2	4	4.3	0.4	20	- 0.02	+ 0.02	•	•	•	•	•	•	KGDI™4
	Baixo esforço de corte	GDG	5020N-040GS	2	5	4.3	0.4	20	- 0.02	+ 0.02	•	•	•	•	•	•	KGDI [®] /∟4 KGDI [®] /∟5
		GDM	3015N-150R-CM	2	3	4.6	1.5	16.3	- 0.03	+ 0.03	•	•	•		•		KGDI ^R /∟3
C.	NSL NSL	GDM	4020N-200R-CM	2	4	4.3	2	20	- 0.03	+ 0.03	•	•	•		•	•	KGDI [₽] /∟4
	Raio completo	GDM	5020N-250R-CM	2	5	4.3	2.5	21	- 0.04	+ 0.04	•	•	•		•	•	KGDI%∟4 KGDI%∟5

Condições de corte recomendadas 🕞 G147

Externo Interno

Face

KGDI (Canal interno)


Mostrado versão à direita

Dimensões do porta-ferramenta

																	Peças de	reposição		
	Descrição		ooni- dade					Dime	nsão	(mm))				Furo de refrigeração	Parafuso de fixação (Torx)	Parafuso	Chave	Chave	Insertos aplicáveis (a) G90
		R	L	<u> </u>	DMIN §&	*com	DCON	XOD	Н	LH	LF	WF	CW min.	CW max.	Furo d					
KGDI [®] /L	1816B-2	•	•	18			16	4.5	15	25	150	9.5					CC 50	1111 2		
	2520B-2	•	•	25	-	-	20	6	18	30	180	14.5	2	2	Sim	-	GS-50	LW-3	-	GDM2013N-020GMI
	3225B-2	•	•	32			25	7	23	40	200	19				SB-5TR	-	-	LTW-20	
KGDI%	2016B-3	•	•	20	21		16	5.5	15	25	150	11.5					CC	111/2		
	2520B-3	•	•	25	26	-	20	6	18	30	180	14.5	3	3	Sim	-	GS-50	LW-3	-	GDM3015N
	3225B-3	•	•	32	33		25	8	23	40	200	19				SB-5TR	-	-	LTW-20	
KGDI [®] /L	3225B-4	•	•	32	40	34	25	8.5	23	40	200	19	4	5	Sim	SB-5TR	_	_	LTW-20	GDM4020N
	4032B-4	•	•	40	48	42	32	11	29	50	220	23.5	4	٦	ااااد	אוכ-טכ	_	_	LI W-ZU	นบเท+บ∠บเ\
KGDI [®] /L	3225B-5	•	•	32	37	34	25	8.5	23	40	200	19	5	_	Cim	SB-5TR	LTW-20	GDM5020N		
	4032B-5	•	•	40	45	42	32	11	29	50	220	23.5	ر ا	5	Sim	DD-DIK		_	LIW-20	ייין אוט אועטעט אוייין אייייין אייייייייייייייייייייייי

^{*} A ponta do suporte pode receber um chanfro adicional de cerca de 0,5 mm

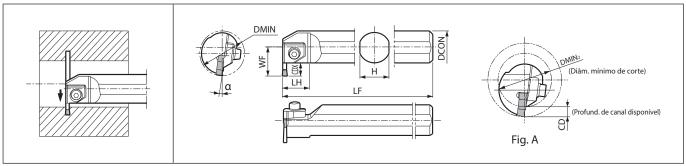
Processamento adicional da ponta do porta-ferramentas quando o quebra-cavacos CM é instalado

* Por meio de leve chanframento da ponta do suporte em cerca de 0,5 mm, o diâm. mín. de corte pode ser reduzido.

GH/GHU

Externo Interno

Face


						Aço carbo	ono /	Aço liga							#							P
Preparação	de aresta					Aço inoxi	dáve								•							М
Símbolo		ificação		Ex	emplo	Ferro fun	dido									•			Ш			K
S		e honeado R	S01020		e honeado R 0.10mm × 20°	Metais n	_									•						N
T	Cha	nfrado	T01020	Cha	nfrado 0.10mm × 20°	Ligas de	_									•						S
						Materiais											\perp	+		4	4	н
				ı		Materiais	dure	os (40HRC	~)												1	
						a aresta			Dimens	io (mm)			ância m)		leta durc		Cerâ	mica	Ce	rme	t	
	ln:	serto			Descrição	ıração d	Nº de arestas							S	PVD	-	PVD	-		-		Porta-ferramenta aplicável
					,	Tipo da preparação da aresta	N° de	CW	S	RE	INSL	CW min.	cw max.	CR9025	PR930	KW10	A66N	A65	TC40N	TC60M	1N60	● G93
				GH	4020-02 4020-05	-	2	4	7.5	0.2 0.5	20	- 0.05	+ 0.05		•	•			•	•		KIGHR4532B-4 KIGHR5540B-4
				GH	4520-02 4520-05	-	2	4.5	7.5	0.2 0.5	20	- 0.05	+ 0.05						•			KIGHR6550B-4
				GH	5020-02 5020-05	-	2	5	7.5	0.2 0.5	20	- 0.05	+ 0.05		•	•			•	•		
		10 ⁸ 0.		GH	5520-02 5520-05	-	2	5.5	7.5	0.5		+ 0.05						•			KIGHR4532B-5 KIGHR5540B-5	
		\$0 PKS BE		GH	6020-02 6020-05	-	2	6	7.5	0.2 0.5	20	- 0.05	+ 0.05		•	•			•	•		KIGHR6550B-5
				GH	6520-02 6520-05	-	2	6.5	7.5	0.2 0.5	20	- 0.05	+ 0.05						•			
				GH	7020-02 7020-05	-	2	7	7.5	0.2 0.5	20	- 0.05	+ 0.05		•	•				•		
				GH	7520-02 7520-05	-	2	7.5	7.5	0.2 0.5	20	- 0.05	+ 0.05						•			KIGHR5540B-7 KIGHR6550B-7
				GH	8020-02 8020-05	-	2	8	7.5	0.2 0.5	20	- 0.05	+ 0.05		•	•			•	•		
				GH	4020-05	S01020 T01020	2	4	7.5	0.5	20	- 0.05	+ 0.05				•	•				KIGHR4532B-4 KIGHR5540B-4 KIGHR6550B-4
		NSL INSL	RE	GH	5020-05	S01020 T01020	2	5	7.5	0.5	20	- 0.05	+ 0.05				•	•				KIGHR4532B-5 KIGHR5540B-5
		5.	120	GH	6020-05	T01020	2	6	7.5	0.5	20	- 0.05	+ 0.05					•				KIGHR6550B-5
	Q			GH	7020-05	T01020	2	7	7.5	0.5	20	- 0.05	+ 0.05					•				KIGHR5540B-7 KIGHR6550B-7
		S T INS	.	GHU	40-20	-	2	4	7.5	0.25	20	- 0.05	+ 0.05	•						-	•	KIGHR4532B-4 KIGHR5540B-4 KIGHR6550B-4
		S INSL		GHU	50-20	-	2	5	7.5	0.3	20	- 0.05	+ 0.05	•						-	•	KIGHR4532B-5 KIGHR5540B-5
		Quebra-cavac	Quebra-cavaco moldado	GHU	60-20	-	2	6	7.5	0.3	20	- 0.05	+ 0.05		٥٤٠		lo f	ort.				KIGHR6550B-5 ndadas 🍑 G65

Condições de corte recomendadas

G65

KIGH (Canal interno / Canal profundo)

Mostrado versão à direita

Dimensões do porta-ferramenta

			Je Je									Pe	ças de reposiç	ão		
	Descrição		Disponibilidade			Dime	nsão	(mm)		Grampo (L)	Parafuso de fixação	Mola	Arruela	Chave	Insertos aplicáveis
			R	DMIN	DCON	XO	Н	LH	LF	WF				0		
KI	GHR	4532B-4	•	45	32		30		200	28.2						CILADO / CIIILAD
		5540B-4	•	55	40	12	38	27	250	32.3	CGH-1L	HH6X25	SP-6	W-6	LW-5	GH4020 / GHU40 GH4520
		6550B-4	•	65	50		48		300	37.3						d11+320
KI	GHR	4532B-5	•	45	32		30		200	28.2						CHEODO /CHIEFO
	5540B-5	•	55	40	12	38	27	250	32.3	CGH-1L	HH6X25	SP-6	W-6	LW-5	GH5020 / GHU50 / GH5520 GH6020 / GHU60 / GH6520	
	6550B-5		•	65	50		48		300	37.3						d110020/ d11000/ d110320
KI	GHR	5540B-7	•	55	40	12	38	27	250	32.3	CGH-2L	HH6X25	SP-6	W-6	LW-5	GH7020 / GH7520 / GH8020

CDX indica a distância entre o porta-ferramentas e a aresta de corte. Para a profundidade de canal disponível (CD), consulte a "Lista de diâm. de corte mín. disponíveis e profundidades de canal". 0 LH depende da largura da aresta do inserto.

Ângulo de saída (α) após instalação do inserto GH / GHU

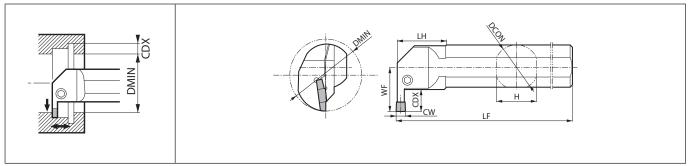
9													
	GH\(\times\)\(\times\)\(\times\)		GHUOO-OO										
α	Classes do Inserto	α	Classes do Inserto										
-5°	A65, A66N, PT600M												
+5°	TC40N]	TN60										
+15°	TN90, TC60M PR930 KW10	+5°	CR9025										

Lista de diâmetros de corte mínimos e profundidades de canal (consulte a Fig. A)

Descrição	do porta-ferramenta		D	MIN2 (Diâm.	mín. de corte	·.)					
KIGHR	4532B-○	ø110	ø55	ø45							
	5540B-〇	ø70	ø60		ø55						
	6550B-〇			Ø	55						
Profundidade d	le canal disponível CD (mm)	12	11.5	11	10	9	Abaixo de 8				

GMM/GMG/GMGA

				Aço	carbono	/ Aço liga	n						ಅ (٥	Т	Р
				Aço	inoxidáv	el							•	5		М
				Fer	ro fundid	0						•		C		K
				Me	tais não f	errosos							\perp	•)	N
				Lig	as de titâ	nio								•		S
				Ma	teriais du	ros (~ 40	HRC)						0			н
				Ma	teriais du	ros (40HF	RC ~)									
						Dimensa	io (mm)			ância m)		Meta	ıl du	iro	Cermet	
In	serto		Descrição	No de arestas							CVD	P	VD	-	-	Porta-ferramenta aplicável
""	561.00		Descrição		CW	S	RE	INSL	CW min.	CW max.	CR9025	PR905	PR915	PR930	ONT N90	GOE
	Orientado a corte afiado / Classe de precisão (quebra-cavaco retificado)	GMG	8030-050MG	2	8	5.5	0.5	30	- 0.03	+ 0.03	0	0	(
	Raio completo / Orienta-do a corte afiado / Classe de precisão	GMGA	8030-400R	2	8	5.5	4	30	- 0.02	+ 0.02)	KIGM [®] /L6540B-8 KIGMUR6540B-8
	GMM 8030-080MW Orientado a controle do cavaco / Classe M		8030-080MW	2	8	5.5	0.8	30	- 0.05	+ 0.05	0	0	0)	

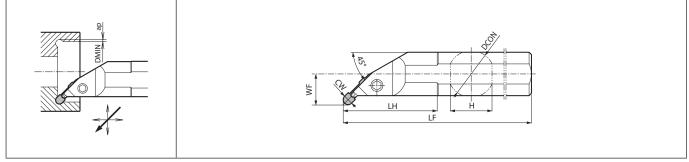

No caso de uso de um inserto de raio completo com porta-ferramentas KIGM-8, você precisa modificar a mandibula inferior do porta-ferramentas.

Condições de corte recomendadas
G143

Interno

Face

KIGM-8 (Canal interno)


Mostrado versão à direita

Dimensões do porta-ferramenta

													Peças de	reposição	
	Descrição			Dimensão (mm)									Parafuso de fixação	Chave	Insertos aplicáveis
		R	L	DMIN	DCON	CDX	Н	LH	LF	WF	CW min.	CW max.			J
KIGM [®] /L	6540B-8	0	0	65	40	20	36	41	300	41	8	8	HH6X20	LW-5	GM8030

CDX exibe a profundidade de canal disponível.

KIGMU-8 (Canal interno / Canal de rebaixamento)

Mostrado versão à direita

Dimensões do porta-ferramenta

		je je										Peças de	reposição	
	Descrição	Disponibilidade										Parafuso de fixação	Chave	Insertos aplicáveis
		R	DMIN	DCON	Н	LH	ар	LF	WF	CW min.	CW max.			
KIGMUR	6540B-8	0	65	40	36	83	2.2	300	26	8	8	HH6X20	LW-5	GM8030

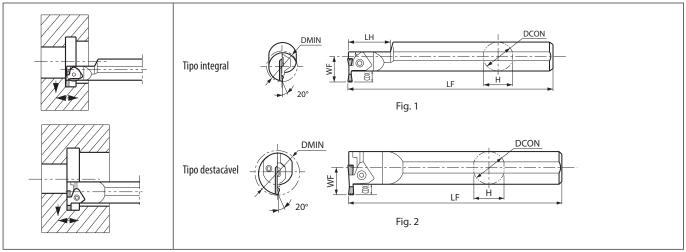
CDX exibe a profundidade de canal disponível. ap mostra a distância da face interna à peça.

anal

GIA

				Aço	carbono	/ Aço liga	1				•	0	P
				Aço	inoxidáv	rel .					•	0	М
				Fer	ro fundid	0							K
				Me	tais não f	errosos							N
				Lig	as de titâ	nio							S
				Ma	teriais du	ros (~ 40	HRC)				•	0	
				Ma	teriais du	ros (40HF	RC ~)						Н
						Dimens	ão (mm)			ância nm)	Aetal duro	Cermet	
In	serto	Descrição	Nº de arestas					,		CND		Porta-ferramenta aplicável	
			·	N° de	CW	S	RE	INSL	CW min.	CW max.	CR9025	TN60	⊕ G97
	in the	GIA	30	2	3	5	0.2	25	- 0.05	+ 0.05	0	0	KGIAR3232B-3 KGIAR4332B-3 KGIAR5140B-3
-	Sin NSL NSL 120	GIA	40	2	4	5	0.25	25	- 0.05	+ 0.05	0	0	KGIAR3232B-4 KGIAR4332B-4 KGIAR5140B-4
	Quebra-cavaco moldado				5	5	0.3	30	- 0.05	+ 0.05	0	0	KGIAR5640B-5 KGIAR6650B-5

G


Insertos GIA - Quebra-cavaco moldado

Externo	
Interno	
Face	

	Classe recomend	ada (Vc: m/min)		(1) f para canal (mm/rev)		
Material	Cermet	Metal duro CVD		(2) f para torneamento (mm/ (3) ap para torneamento (mn		Observações
	TN60	CR9025	GIA 30	GIA 40	GIA 50	
Aço carbono	Aço carbono		(1) 0.04~0.08 (2) 0.02~0.08 (3) Max. 0.3	(1) 0.04~0.09 (2) 0.02~0.08 (3) Max. 0.4	(1) 0.05~0.1 (2) 0.05~0.08 (3) Max. 0.5	
Aço liga	☆ 60~100	★ 60~100	(1) 0.04~0.07 (2) 0.02~0.07 (3) Max. 0.3	(1) 0.04~0.07 (2) 0.02~0.07 (3) Max. 0.4	(1) 0.05~0.08 (2) 0.05~0.08 (3) Max. 0.5	Com refrig.
Aço inoxidável	-	★ 60~80	(1) 0.04~0.07 (2) 0.02~0.07 (3) Max. 0.3	(1) 0.04~0.07 (2) 0.02~0.07 (3) Max. 0.4	(1) 0.05~0.08 (2) 0.05~0.08 (3) Max. 0.5	

★:1ª recomendação ☆:2ª recomendação

KGIA (Canal interno / Canal profundo)

Mostrado versão à direita

Dimensões do porta-ferramenta

		le										Peças de	reposição		
	Descrição	Disponibilidade		I	Dime	nsão	(mm))		Fig.	Parafuso de fixação	Grampo	Mola	Chave	Insertos aplicáveis G96
		R	DMIN	DCON	XO	Н	LH	LF	WF						
KGIAR	3232B-3	0	32	77		30.4	45	200	26.5	1					
	4332B-3	0	43	32	10	30		200	26.3	2	HH5X15	CGIA-3R	SP-5	LW-4	GIA30
	5140B-3	0	51	40		38	-	250	30.3	4					
KGIAR	3232B-4	0	32	32		30.4	45	200	26.5	1					
	4332B-4	0	43	32	10	30		200	26.3	_	HH5X15	CGIA-4R	SP-5	LW-4	GIA40
	5140B-4	0	51	40		38	_	250	30.3	2					
KGIAR	5640B-5	0	56	40	15	38	38 250	250	35.3	2	IIIIEV1E	CCIA ED	CD E	110/ 4	CIACO
	6650B-5	0	O 66 50 15 4	48] -	300	40.3	2	HH5X15	CGIA-5R	SP-5	LW-4	GIA50		

CDX exibe a profundidade de canal disponível.

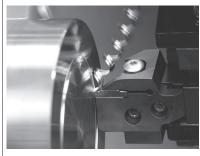
Composição

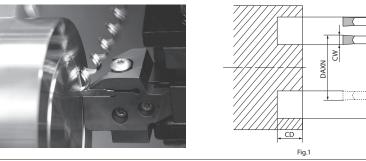
Composição	,				
	Peças de reposição	Porta-ferramenta	Lâmina	Parafuso de fixação	Chave
Time	reşus de reposição				
Tipo					
	Descrição do porta-ferramenta	(Contraction of the contraction			
Tipo integral	KGIAR 3232B-3	-	-	-	-
Tipo	4332B-3	KGIAR32H	BGIAR43-3	SB-40140TR	FT-15
destacável	5140B-3	KGIAR40H	BGIAR51-3	3D-401401N	11-13
Tipo integral	3232B-4	-	-	-	-
Tipo	4332B-4	KGIAR32H	BGIAR43-4	SB-40140TR	FT-15
destacável	5140B-4	KGIAR40H	BGIAR51-4	3D-401401N	11-13
Tipo	5640B-5	KGIAR40H	BGIAR56-5	SB-40140TR	FT-15
destacável	6650B-5	KGIAR50H	BGIAR66-5	70 140 IN	11-13

GMM-V

External Internal

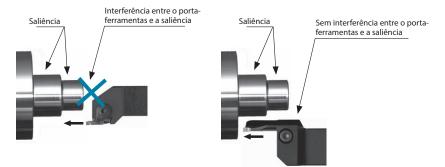
Face

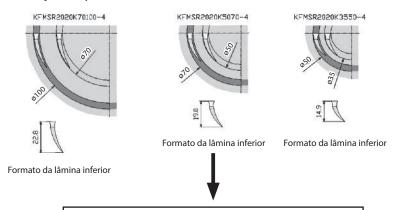

				Aço	carbono	/ Aço liga	3						<u>ی</u>	۲		P
				Aço	inoxidáv	rel .							•	5		M
			Fer	ro fundid	0						•			9	K	
				Me	tais não f	errosos									•	N
				Lig	as de titâ	nio									•	S
				Ma	teriais du	ros (~ 40	HRC)						0			Н
				Ma	teriais du	ros (40HF	RC ~)									
				Dimensão (mm) Tolerância (mm)			Met	al du	ıro	Cormot						
In	serto		Descrição	N⁰ de arestas	restas		(1111)		F	VD		- -	Porta-ferramenta			
111	SEI (U		Descrição	N° de a	CW	S	RE INSL	CW min.	CW max.	CR9025	PR905	PR915	PR930	TNOO	aplicável	
E E S	Signal Residence of the Cavaco / Classe M	GMM	3015-040V	2	3	4.3	0.4	15.5	- 0.05	+ 0.05		0	0) C		KIGM [®] ∕LB-3V
ELECT S	RE R	GMM	4020-040V	2	4	4.3	0.4	20	- 0.05	+ 0.05	0	0	0) (C		
Não á resemble	Orientado a controle do cavaco / Classe M	GMM	5020-080V	2	5	4.3	0.8	20		+ 0.05						− KIGM [®] /LB-4V


Não é recomendado usar em porta-ferramentas de canal interno KIGM-V que exigem insertos do tipo GMM...V com ângulo de folga frontal de 18° com inserto para canal externo cujo ângulo de folga é de 10°.

Condições de corte recomendadas
G143

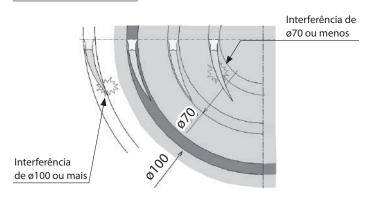
Diâm. externo do canal DAXN / DAXX


O diâm. externo do canal em DAXN ~ DAXX indica a faixa disponível para o canal inicial na peça não processada (Consulte a Fig. 1).



Precauções para canal de face

1. Ao fazer canal de face, o porta-ferramentas adequado depende do comprimento da saliência



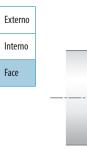
2. Seleção do porta-ferramentas de canal de face

A ampliação do canal (torneamento) deve ser realizado de fora para dentro

3. Interferência do porta-ferramentas de canal de face e.g.) KFMSR2525M70100-4

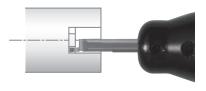
Canal de face de diâmetro pequeno ø6~

Tipo	STW
Diâm. externo do canal (MIN.)	ø6
Largura da aresta (mm)	0.5~2.0
Profund. máx. de canal (mm)	1.0~3.0
Consulte a página	G106


Tipo	SSTW				
Diâm. externo do canal (MIN.)	ø6				
Largura da aresta (mm)	0.5~2.0				
Profund. máx. de canal (mm)	1.0~3.0				
Consulte a página	G107				

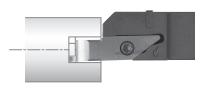
Tipo	STWS
Diâm. externo do canal (MIN.)	ø6
Largura da aresta (mm)	0.5~2.0
Profund. máx. de canal (mm)	1.0~3.0
Consulte a página	G109

Canal de face de diâmetro pequeno ø8~



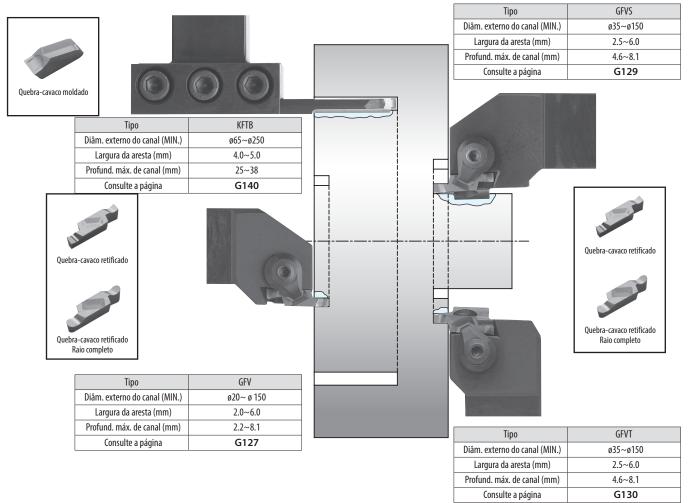
Tipo	GFVS-AA
Diâm. externo do canal (MIN.)	ø8
Largura da aresta (mm)	1.0~3.0
Profund. máx. de canal (mm)	2.2
Consulte a página	G125

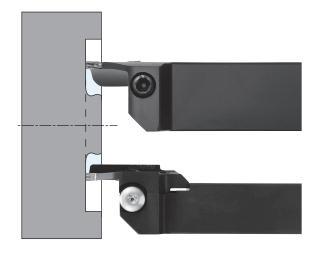
Tipo	GFVT-AA
Diâm. externo do canal (MIN.)	ø8
Largura da aresta (mm)	1.0~3.0
Profund. máx. de canal (mm)	2.2
Consulte a página	G125



Canal de face de diâmetro pequeno ø5~, ø8~

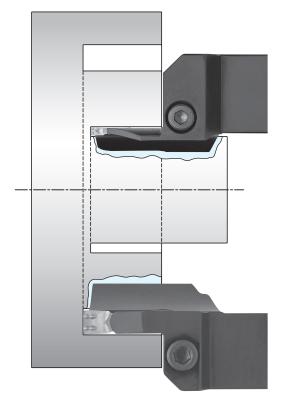
Tipo	EZFG
Diâm. externo do canal (MIN.)	ø5, ø 6, ø 8
Largura da aresta (mm)	1.0~3.0
Profund. máx. de canal (mm)	1.5~3.0
Consulte a página	G103




Tipo	VNFG
Diâm. externo do canal (MIN.)	ø 8
Largura da aresta (mm)	1.0~3.0
Profund. máx. de canal (mm)	2.0~3.0
Consulte a página	G105

Canal de face ø20~

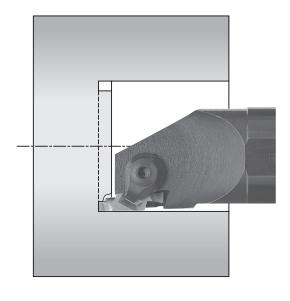
Canal de face KGDF ø25~

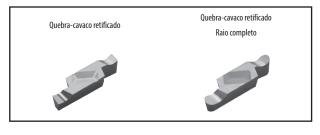

Tipo	KGDF-Z
Diâm. externo do canal (MIN.)	ø50
Largura da aresta (mm)	3.0~5.0
Profund. máx. de canal (mm)	15
Consulte a página	G118

Tipo	*KGDF
Diâm. externo do canal (MIN.)	ø25
Largura da aresta (mm)	2.0~6.0
Profund. máx. de canal (mm)	6~32
Consulte a página	G114~G117

^{*} O porta-ferramenta do tipo destacável pode aceitar todas as lâminas caso o sentido seja correspondente.

Canal de face e torneamento ø25~


Tipo	KFMS				
Diâm. externo do canal (MIN.)	ø25~ø235				
Largura da aresta (mm)	3.0~6.0				
Profund. máx. de canal (mm)	13~32				
Consulte a Página	G135				


Tipo	KFMS-8
Diâm. externo do canal (MIN.)	ø54~ø155
Largura da aresta (mm)	8.0
Profund. máx. de canal (mm)	25
Consulte a Página	G138

Canal de face ø35~

Tipo	GIFV
Diâm. externo do canal (MIN.)	ø35~ ø 50
Largura da aresta (mm)	2.0~6.0
Profund. máx. de canal (mm)	2.2~8.1
Consulte a Página	G133



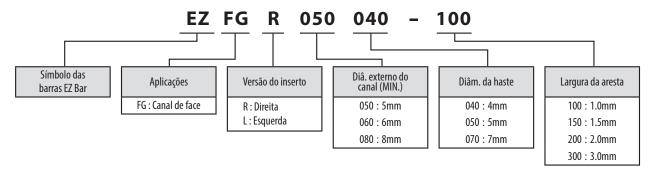
Canal

Interno

Face

EZFG (Canal interno / Canal de face)

Mostrado versão à direita


Dimensões

			Diâm. externo do canal (mm)			Dir	nensa	io (m	m)				Tolerând	tia (mm)		N	letal du	ro	
	Descrição	de arestas														P۱	/D	-	Luvas aplicáveis
	Descrição	N° de	DAXN (min.)	cw	ĕ	RE	DCON	Н	LF	LU	WF	CW min.	CW max.	RE min.	RE max.	PR1	225	GW05	● F38~F43
																R	Ĺ	R	
EZFG [®] /L	050040-100 050040-150	1	5	1 1.5	1.5 2	0.05	4	3.8	45	12	1.9	-0.03	+0.03	-0.013	+0.013	•	•	•	EZH040
EZFG ^P /L	060050-100 060050-150 060050-200	1	6	1 1.5 2	1.5 2.5 3	0.05	5	4.8	53.2	15	2.4	-0.03	+0.03	-0.013	+0.013	•	•	•	EZH050
EZFG [®] /L	080070-100 080070-150 080070-200 080070-300	1	8	1 1.5 2 3	2 2.5 3 3	0.05	7	6.8	64.2	25	3.4	-0.03	+0.03	-0.013	+0.013	•	•	•	ЕZН070

CDX exibe a profundidade de canal disponível.

Condições de corte recomendadas
 G104

Sistema de identificação de barras EZ Bar

G

Canal

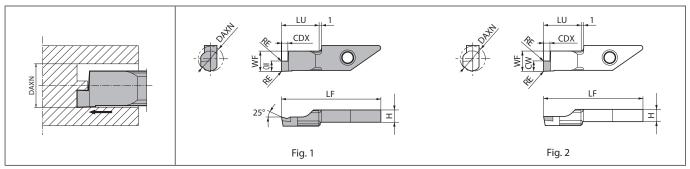
Luvas aplicáveis

			Luva				Inserto aplicável para canal	de face interna	
balanço	EZH-CT (Comprimento em ajustável com furo de refrigeração)	(Comp	EZH-HP rimento em balanço ajustável)		EZH-ST	Diâm da haste da luva	EZFG	Diâm. da haste	Fabricante de máquinas aplicáveis
	● F39		● F41		● F43	DCON(mm)		DCON(mm)	·
				EZH	04012ST-80		EZFG ^P / _L 050040	4	
	-		-		05012ST-80	12	EZFG ^R / _L 060050	5	(Uso geral)
					07012ST-80		EZFG ^P / _L 080070	7	
		EZH	04016HP-100	EZH	04016ST-100		EZFG ^P / _L 050040	4	
	-		05016HP-100		05016ST-100	16	EZFG ^R / _L 060050	5	(Uso geral)
			07016HP-100		07016ST-100		EZFG ^P / _L 080070	7	
EZH	04019CT-120	EZH	04019HP-120	EZH	04019ST-120		EZFG ^P / _L 050040	4	
	05019CT-120		05019HP-120		05019ST-120	19.05	EZFG ^R / _L 060050	5	Citizen Machinery
	07019CT-120		07019HP-120		07019ST-120		EZFG ^P / _L 080070	7	
EZH	04020CT-120	EZH	04020HP-120	EZH	04020ST-120		EZFG ^P / _L 050040	4	Eguro
	05020CT-120		05020HP-120		05020ST-120	20	EZFG ^R / _L 060050	5	Tsugami Citizen Machinery
	07020CT-120		07020HP-120		07020ST-120		EZFG ^P / _L 080070	7	(Uso geral)
EZH	04022CT-135	EZH	04022HP-135	EZH	04022ST-135		EZFG ^P /∟ 050040	4	Star Micronics
	05022CT-135		05022HP-135		05022ST-135	22	EZFG ^P / _L 060050	5	Nomura DS
	07022CT-135		07022HP-135		07022ST-135		EZFG ^P / _L 080070	7	Tsugami
EZH	04025.0CT-135	EZH	04025.0HP-135	EZH	04025.0ST-135		EZFG ^P / _L 050040	4	Eguro
	05025.0CT-135		05025.0HP-135		05025.0ST-135	25	EZFG ^P / _L 060050	5	Tsugami Citizen Machinery
	07025.0CT-135		07025.0HP-135		07025.0ST-135		EZFG ^P / _L 080070	7	(Uso geral)
EZH	04025.4CT-120	EZH	04025.4HP-120	EZH	04025.4ST-120		EZFG ^P / _L 050040	4	
	05025.4CT-120		05025.4HP-120		05025.4ST-120	25.4	EZFG ^P / _L 060050	5	Citizen Machinery
	07025.4CT-120		07025.4HP-120		07025.4ST-120		EZFG ^R /L 080070	7	

Condições de corte recomendadas

	Classes d	lo Inserto	EZFG ^P /L050040-100 EZFG ^P /L060050-100	EZFG ^P /L 050040-150 EZFG ^P /L 060050-150	EZFG ^P /⊾060050-200		
Material	MEGACOAT	Metal duro	EZFG ^R /L080070-100	EZFG ^R /L080070-150	EZFG ^R /L080070-200	EZFG ^R /L080070-300	Observações
	PR1225	GW05		f (m	m/rev)		
Aço carbono / Aço liga	★ 30~100	-	~0.02	~0.03	~0.04	~0.05	
Aço inoxidável	★ 30~80	-	~0.01	~0.02	~0.02	~0.03	Com refrig.
Metais não ferrosos	-	★ ~300	~0.03	~0.05	~0.06	~0.08	

★: 1ª recomendação



Interno

Face

⁻ Escolha luvas (DCB) que coincidam com a dimensão DCON dos insertos de canal de face.
- O pino de ajuste não pode ser instalado em luvas EZH-ST Para balanço da barra ajustável com pino, use luvas EZH-CT / HP.
- Fabricantes de máquinas em ordem aleatória

VNFG (Canal interno / Canal de face)

Mostrado versão à direita

Dimensões

			Diâm. ex canal				Dime	nsão	(mm)			Toler (m	ância m)		Me	tal di	uro	PCD	
	Descrição	de arestas												Fig.	PV	/D	-	1	Porta-ferramenta aplicável
	Descrição	N° de	DAXN (min.)	DAXX (max.)	CW	XOX	RE	Н	LF	LU	WF	CW min.	CW max.	H	PR1225	PR930	KW10	KPD001	● F48~F51
VNFGR	0810-10 0820-10 0830-10	1	8 (0)	∞ (∞)	1 2 3	2 2 3	0.05	3.9	29.6	10	7.3	-0.03	+0.03	1	• • •	•	•		SVNR12N SSVNR12N
VNFGR	0820-10NB 0830-10NB	1	(0)	(33)	2	2	0.05	3.9	29.6	10	7.3	-0.03	+0.03	2				MTO MTO	SSVNR12SN

CDX exibe a profundidade de canal disponível.

O diâm. externo do canal DAXN (0) significa que você pode fazer o canal inicial dentro de DAXN ~ DAXX e, em seguida, ampliá-lo para o centro.

Condições de corte recomendadas

	Classe r	ecomendada (Vc:	m/min)				
Material	MEGACOAT	Metal duro PVD	Metal duro	VNFG0810	VNFG0820	VNFG0830	Observações
Macrial	PR1225	PR930	KW10				0bser
	1111223	1 11,250	KWIO		f (mm/rev)		
Aço carbono / Aço liga	★ 30~100	☆ 30~100		~0.02	~0.04	~0.05	
Aço inoxidável	★ 30~100	☆ 30~80		~0.01	~0.02	~0.03	Com refrig.
Metais não ferrosos			★ ~300	~0.04	~0.06	~0.08	

★:1ª recomendação ☆:2ª recomendação

G

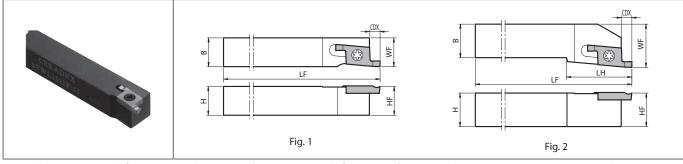
anal

As barras de haste do sistema são vendidas em caixas com 5 peças Insertos CBN e PCD são vendidos em caixa com 1 peça

TWFG (Canal de face, tipo horizontal)

			Aço	carbono /	' Aço liga							0	•	P	
			Aço	inoxidáve	ı							0	•	М	
			Fer	ro fundido										K	
			Me	tais não fe	rrosos							Ш	•	N	
			Lig	as de titân	io									S	
			Ma	teriais dur	os (~ 40HR	C)							\perp	н	
			Ma	teriais dur	os (40HRC -	~)									
				Diâm. 6 do cana	externo al (mm)	Dim	ensão (r	nm)		ância m)	Ângulo (°)		letal uro		
Inc	erto	Descrição	Nº de arestas									PV	D -	Porta-ferramer aplicável	nta
1113	crio	Descrição	N° de	DAXN (min.)	DAXX (max.)	CW	CDX	RE	CW min.	CW max.	RA	PR1025	PR1535	● G106 G107	
		TWFGL 050 080 100 125 150 180 200	2	6 (0)	⊗ (⊗)	0.5 0.8 1 1.25 1.5 1.8 2	1 1.5 2.2 2.2 2.2 3 3	0.05	- 0.03	+ 0.03	1.5 1.5 2 2 2 2 2	• • • • • •		STWL15 SSTWL15	

CDX exibe a profundidade de canal disponível.
O diâm. externo do canal DAXN (0) significa que você pode fazer o canal inicial dentro de DAXN ~ DAXX e, em seguida, ampliá-lo para o centro. Mostrado versão à esquerda


Condições de corte recomendadas 🜒 G109

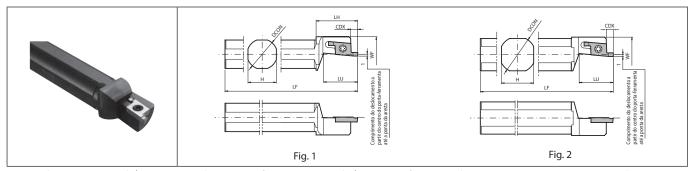
Externo

Interno

Face

STW (Canal de face, haste quadrada para tipo horizontal)

Mostrado versão à esquerda | Inserto esquerdo para porta-ferramenta esquerdo. | (Para porta-ferramenta direito para torneamento interno, consulte a página F56.)


Dimensões do porta-ferramenta

		ه									Peças de	reposição	
	Descrição	Disponibilidade			Dime	nsão	(mm))		Fig.	Parafuso	Chave	Insertos aplicáveis G106
		L	XOD	Н	В	LH	HF	LF	WF				
STWL	1010F-15	•		10	10		10	85	10				
	1212F-15	•	3	12	12	_	12	00	12	1	SB-3080TR	LTW-10S	TWFGL
	1212K-15	•	,	12	12	-	12	125	12	'	30-3001h	LIW-103	I WIGL
	1616K-15	•		16	16		16	123	16				
STWL	2020K-15	•	3	20	20	25	20	125	25	2	SB-3080TR	LTW-10S	TWFGL
	2525M-15	•	,	25	25	23	25	150	32		או 1000 ב-מכ	LI W-103	I WI UL

CDX indica a distância entre o porta-ferramenta e a aresta de corte. Profundidade de canal disponível: "CDX" do inserto.

As barras duplas são vendidas em caixas com 5 peças

STW (Canal de face, haste redonda para inserto tipo horizontal)

Mostrado versão à esquerda | Inserto esquerdo para porta-ferramenta esquerdo. | (Para porta-ferramenta direito para torneamento interno, consulte a pág. F57.)

Dimensões do porta-ferramenta

		-de										Peças de	reposição	
Des	crição	Disponibilidade		D	imen	são (r	nm)			Furo de refrigeração	Fig.	Parafuso	Chave	Insertos aplicáveis G106
		L	DCON	XO	Н	LH	LF	LU	WF	Furod				
S12F- STWL15	5	•	12		11		80							
S14H- STWL15	5	•	14	3	13	22	100	18	20	Não	1	SB-3080TR	LTW-10S	TWFGL
S15F- STWL15	5	•	15.875	,	15	22	85	10	20	INAU	'	3D-30001N	LIW-103	TWFGL
S16F- STWL15	5	•	16		13		ده							
S19G- STWL15	5	•	10.05		17		90		10 [
S19K- STWL15	5	•	19.05		17		120	18	18.5					
S20G- STWL15	5	•	20		18		90	18	19.5					
S20K- STWL15	5	•	20	3	18	-	120		19.5	Não	2	SB-3080TR	LTW-10S	TWFGL
S22K- STWL15	5	•	22		20		125		21.5					
S25.0J- STWL15	5	•	25		22]	110	22	24.5					
S25K- STWL15	5	•	25.4		23		120		25					

CDX indica a distância entre o porta-ferramenta e a aresta de corte. Profundidade de canal disponível: "CDX" do inserto.

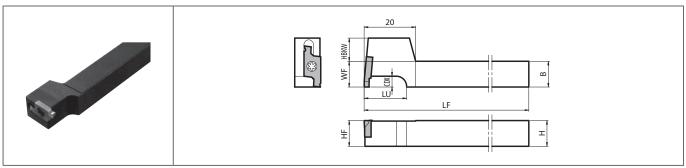
TWFGT (Canal de face, tipo vertical)

			Aço	carbono /	' Aço liga							0		Р
			Aço	inoxidáve	el .							0	•	М
			Fer	ro fundido										K
			Me	tais não fe	rrosos								•	N
			Lig	as de titân	io									S
			Ma	teriais dur	os (~ 40HR	C)								Н
					os (40HRC						,			
					rterno do (mm)	Dim	ensão (r	nm)			Ângulo (°)		etal	
			S		(111111)				(111)	m)	()	u	uro	-
la.		Danawiniin	resta									PVI) -	Porta-ferramenta
ins	serto	Descrição	Nº de arestas	DAXN (min.)	DAXX (max.)	CW	CDX	RE	CW min.	CW max.	RA ^R /L	PR1025	PR1535 KW10	aplicável ⊕ G109
		TWFGTR 050 080 100 125 150 180 200	2	6 (0)	8 (8)	0.5 0.8 1 1.25 1.5 1.8 2	1 1.5 2.2 2.2 2.2 3 3	0.05	- 0.03	+ 0.03	1.5 1.5 2 2 2 2 2			STWSR15T

Condições de corte recomendadas
 G109

CDX exibe a profundidade de canal disponível.

O diâm. externo do canal DAXN (0) significa que você pode fazer o canal inicial dentro de DAXN ~ DAXX e, em seguida, ampliá-lo para o centro.


Mostrado versão à direita

Interno

Face

Barras duplas

STWS (Canal de face, haste quadrada para tipo vertical, formato em L)

Mostrado versão à direita

Dimensões do porta-ferramenta

		l e									Peças de	reposição	
	Descrição	Disponibilidade			Dir	nens	ăo (m	m)			Parafuso	Chave	Insertos aplicáveis G108
		R	Н	В	LU	HF	HBKW	LF	CDX	WF			Ū
STWSR	1010F-15T 1010JX-15T	•	10	10	16	10	9	85 120		10			
	1212F-15T 1212JX-15T	•	12	12	10	12	7	85	3	12	SB-3080TR	LTW-10S	TWFGTR
	1616JX-15T	•	16	16	20	16	3	120		16			

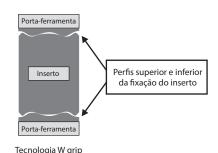
CDX indica a distância entre o porta-ferramenta e a aresta de corte. Profundidade de canal disponível: "CDX" do inserto.

Condições de corte recomendadas TWFG/TWFGT

	(ilasse recomendada (Vc:m/mir)	TWFGL050 TWFGL080 TWFGL100	TWFGL125 TWFGL150	TWFGL180 TWFGL200	
Material	MEGACOAT	Metal duro PVD	Metal duro	TWFGTR050 TWFGTR080 TWFGTR100	TWFGTR125 TWFGTR150	TWFGTR180 TWFGTR200	Observações
	PR1535	PR1025	KW10		f (mm/rev)		
Aço carbono / Aço liga	★ 30~100	☆ 30~100	-	~0.02	~0.03	~0.04	
Aço inoxidável	★ 30~80	☆ 30~80	-	~0.01	~0.02	~0.02	Com refrig.
Metais não ferrosos	-	-	★ ~300	~0.03	~0.04	~0.06	

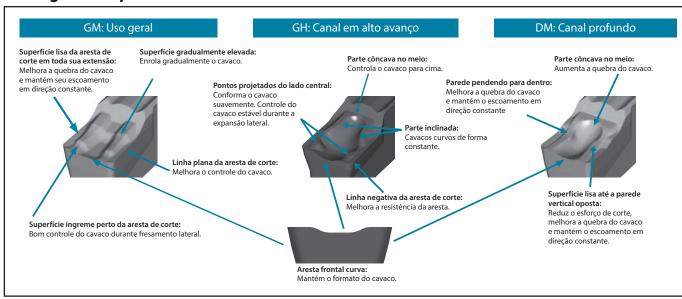
KGDF: Canal de face

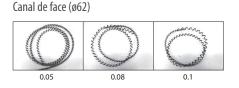
O porta-ferramentas do tipo destacável (suporte + lâmina) e o porta-ferramentas do tipo integral estão disponíveis. Atende a uma ampla série de aplicações de canal de face por meio da troca das lâminas



Novo sistema de fixação de insertos "W Grip"

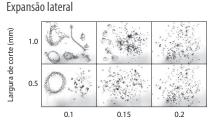
O "W Grip", estrutura de inserção exclusivo, que proporciona rigidez e usinagem estável


- 1. Impede uma superfície de usinagem anormal e / ou quebra do inserto resultante do deslizamento do inserto.
- 2. Melhora a precisão de instalação na repetição da montagem Os insertos GDFM e GDFMS não são aplicáveis aos porta-ferramentas de canal externo KGD, corte e porta-ferramentas de canal interno KGDI


Controle do cavaco suave

O quebra-cavaco GM para uso geral, GH para canal de alto avanço e DM para canal profundo estão disponíveis

Vantagens do quebra-cavacos



Controle do cavacos do quebra-cavaco GM

Taxa de avanço f (mm/rev)

Condições de corte: Vc = 150 m/min, f = 0.05 ~ 0.2 mm/rev, GDFM5020N-040GM, SCM415, com refrig.

Torneamento

0.8

0.5

0.2

0.05

0.1

0.15

f (mm/rev)

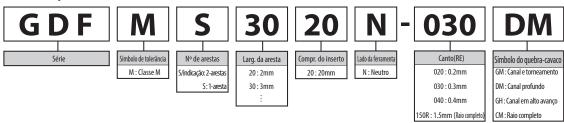
nal

xterno

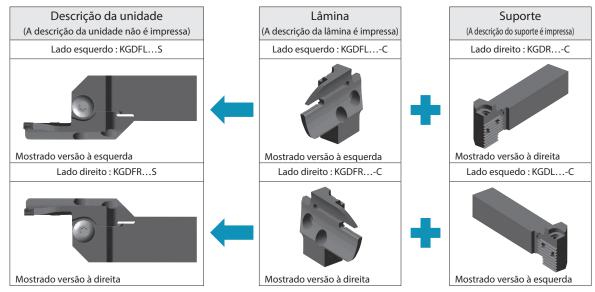
Interno

Face

Ganal


GDFM/GDMFS

				Aço	carbono	/ Aço liga	a				9	•			P
				Aço	inoxidáv	rel .					(1)	•			М
					ro fundid						•				K
					tais não f							•			N
					as de titâ	nio iros (~ 40	HDC)						9		S
				-		ros (40HF						H	$^{+}$		Н
									Toler	ância	١	/letal		Cer-	
				<u>د</u> ا		Dillicits	1		(m	m)	(duro	4	met	
				N° de arestas							P۱	/D	-	-	Porta-ferramenta
In	serto		Descrição	de a	CW	S	RE	INSL	CW	CW			1		aplicável → G114 ~ G120
				ž	CIV			IIIJE	min.	max.	31215	PR1225	SI MD	TN620 TN90	
											Ы	۱ ا	ا		
		GDFM	2020N-020GM	2	2	3.9	0.2	21	- 0.03	+ 0.03	•	•		•	KGDF%2
	P4	GDFM	3020N-030GM	2	3	4.3	0.3	20	- 0.03	+ 0.03	•	•		•	KGDF%3
A. E.	NG. Re	GDFM	4020N-040GM	2	4	4.5	0.4	20	- 0.03	+ 0.03	•	•		•	KGDF [®] /∟4
		GDFM	5020N-040GM 5020N-080GM	2	5	4.5	0.4 0.8	20	- 0.04	+ 0.04	•	•		•	KGDF%5
	Uso geral	GDFM	6020N-040GM 6020N-080GM	2	6	4.5	0.4 0.8	20	- 0.04	+ 0.04	•	•		•	KGDF [®] /∟6
		GDFM	4020N-040GH	2	4	4.5	0.4	20	- 0.03	+ 0.03	•	•			KGDF [®] /∟4
	MS.	GDFM	5020N-040GH 5020N-080GH	2	5	4.5	0.4 0.8	20	- 0.04	+ 0.04	•	•			KGDF [₽] /∟5
	Alto avanço	GDFM	6020N-040GH 6020N-080GH	2	6	4.5	0.4 0.8	20	- 0.04	+ 0.04	•	•			KGDF [®] /6
	*	GDFM	3020N-030DM	2	3	4.3	0.3	20	- 0.03	+ 0.03	•	•		•	KGDF [™] 3
	NGL NE	GDFM	4020N-040DM	2	4	4.5	0.4	20	- 0.03	+ 0.03	•	•	T	•	KGDF%4
		GDFM	5020N-040DM	2	5	4.5	0.4	20	- 0.04	+ 0.04	•	•		•	KGDF%5
	Canal profundo	GDFM	6020N-040DM	2	6	4.5	0.4	20	- 0.04	+ 0.04	•	•		•	KGDF [™] 6
	-	GDFMS	3020N-030DM	1	3	4.3	0.3	20	- 0.03	+ 0.03	•	•		•	KGDF%3
		GDFMS	4020N-040DM	1	4	4.5	0.4	20	- 0.03	+ 0.03	•	•		•	KGDF%4
3		GDFMS	5020N-040DM	1	5	4.5	0.4	20	- 0.04	+ 0.04	•	•	1	•	KGDF [₽] /∟5
	Canal profundo / 1 aresta	GDFMS	6020N-040DM	1	6	4.5	0.4	20	- 0.04	+ 0.04			1	•	KGDF [₽] /∟6
		GDFG	3020N-020GS	2	3	4.3	0.2	20	- 0.2	+ 0.2					KGDF [®] /∟3
	INSL 1'30'	GDFG	4020N-040GS	2	4	4.5	0.4	20	- 0.2	+ 0.2					KGDF%4
		GDFG	5020N-040GS	2	5	4.5	0.4	20	- 0.2	+ 0.2					KGDF%L5
	Metais não ferrosos	GDFG	6020N-040GS	2	6	4.5	0.4	20	- 0.2	+ 0.2					KGDF%6
	1	GDFM	3020N-150R-CM	2	3	4.3	1.5	20	- 0.03	+ 0.03	•	+	+	•	KGDF%3
	B C D D D D D D D D D D D D D D D D D D	GDFM	4020N-200R-CM	2	4	4.5	2	21	- 0.03	+ 0.03			+	•	KGDF%4
A la		GDFM	5020N-250R-CM	2	5	4.5	2.5	21	- 0.04			-	+	•	KGDF%5
	· ·	GDFM	6020N-300R-CM	2	6	4.5	3	22	- 0.04	+ 0.04		-	+	•	KGDF%6
	Raio completo	GDFINI	UUZUN-SUUN-CIVI	<u>۷</u>	U	4.3	د ا	22	- 0.04	T- 0.04				_	KGDE /LU


O GDFM40/50/60-CM difere de outras descrições em comprimento (INSL) para evitar a interferência entre o porta-ferramenta e a peça usinada.

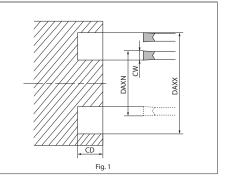
Condições de corte recomendadas
 G122

Sistema de identificação de insertos

KGDF: Identificação do conjunto porta-ferramenta

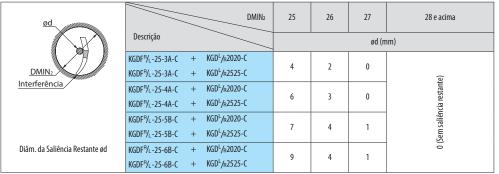
- a a
- Lâmina direita para suporte esquerdo, lâmina esquerda para suporte direito.
- \bullet A descrição da unidade não está impressa no produto. Ela está impressa na etiqueta da caixa.
- A combinação de suporte e lâmina (ambos vendidos separadamente) pode constituir o conjunto correspondente.
- O parafuso de fixação do inserto (BH6X10TR), o parafuso de fixação da lâmina (SB-60120TR) e a chave (LTW-25) que estão incluídos no porta-ferramentas podem ser usados.

Parafuso de fixação (para grampo de inserto)	Parafuso de fixação (para lâmina)	Chave
BH6X10TR	SB-60120TR	LTW-25


Interno

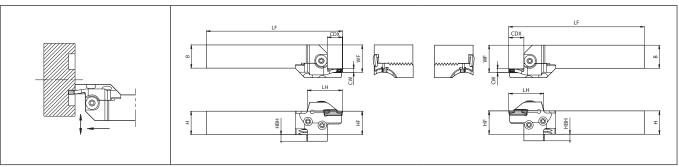
Face

0 diâm. externo do canal em DAXN \sim DAXX refere-se a faixa disponível para o canal inicial na peça não processada (Consulte a Fig. 1).


Em seguida, você pode alargar para o centro em direção ao centro (excluindo os modelos listados na tabela abaixo) e para o exterior de acordo com os limites da máquina.

Limite de torneamento em direção ao centro

Tornear em direção ao centro pode fazer com que o porta-ferramentas interfira com a parede do canal dependendo do diâmetro do corte inicial.


Porta-ferramenta montado de KGDFR-25-3A-C e KGDL2020-C com o ø25 como primeiro corte em direção ao centro causará interferência com a lâmina do porta-ferramenta se ød for 4,0 mm.

KGDF (Canal de face / Tipo destacável 0°)

Mostrado versão à direita (Lâmina direita e suporte esquerdo)

Mostrado versão à esquerda (Lâmina esquerda e suporte direito)

Dimensões do porta-ferramenta (Lâmina e suporte)

G

Canal

Externo Interno

Face

Ângulo da haste	-argura de corte CW (mm)	famanho da haste (mm)	Profund. máx. de corte CDX(mm)	Diâ exter car (m	no do nal	Desci	rição da lâmina	Descrição do suporte			Dime	nsão	(mm))	
Ângulo	Largura de co	Tamanho da	Profund. máx. de o	DAXN (min.)	DAXX (max.)		⊚ G121	⊕ G43	Н	В	LH	HF	HBH	LF	WF
		□20	6 13 15	25 30 35 45 60 80 100 25 30 35 45 60 80 100 25	30 35 45 60 80 100 130 30 35 45 60 80 100 130 30	KGDFR	-25-2A-C -30-2A-C -35-2A-C -45-2A-C -60-2A-C -100-2A-C -25-2B-C -30-2B-C -35-2B-C -45-2B-C -60-2B-C -80-2B-C -100-2B-C -25-2A-C	KGDL2020-C	20	20	33 36 38	20	12	115 118 120	24.5
0°	2	□25	6 13	30 35 45 60 80 100 25 30 35 45 60 80	30 35 45 60 80 100 130 30 35 45 60 80 100 130	KGDFR	-25-2A-C -30-2A-C -35-2A-C -45-2A-C -60-2A-C -80-2A-C -100-2A-C -30-2B-C -30-2B-C -35-2B-C -45-2B-C -60-2B-C -80-2B-C -100-2B-C	KGDL2525-C	25	25	33 36 38	25	7	140 143 145	29.5
		□32	13	25 30 35 45 60 80 100 25 30 35 45 60 80	30 35 45 60 80 100 130 30 35 45 60 80 100 130	KGDFR	-25-2A-C -30-2A-C -35-2A-C -45-2A-C -45-2A-C -60-2A-C -100-2A-C -25-2B-C -35-2B-C -35-2B-C -45-2B-C -60-2B-C -80-2B-C -100-2B-C	KGDL3232-C	32	32	33 36 38	32	-	160 163	36.5

 $1.\,KGDF: L\^amina\ direita\ para\ suporte\ esquerdo, l\^amina\ esquerda\ para\ suporte\ direito.$

Insertos aplicáveis 🍙 G111

- 2. CDX: Profundidade máxima na qual o processamento pode ser realizado. (Caso o CDX seja de 20 mm ou mais, a profundidade máxima do canal feito pelo inserto de 2 arestas será de 18 mm.)

 Os porta-ferramentas acima também são aplicáveis para corte.
- 3. O parafuso de fixação do inserto (BH6X10TR), o parafuso de fixação da lâmina (SB-60120TR) e a chave (LTW-25) que estão incluídos no porta-ferramentas podem ser usados.

O suporte é aplicável a todas as lâminas com sentido correspondente.

G

lau

Dimensões do porta-ferramenta (Lâmina e suporte)

Section Sect	8 2 55		型 12	LF 118 120	WF
13 30 40 -30-3A-C -40-3A-C -50-3B-C -65-3B-C -65-3B-C -710-3B-C -	24	0	12		
15 65 85 110 -65-3B-C -85-3B-C -110-3B-C 22 50 65 85 110 -65-3C-C -65-3C-C -65-3C-C -65-3C-C -65-3C-C -65-3C-C -65-3C-C -85-3C-C	15	0	12	120	
22 50 65 KGDF ⁺ / ₋ -50-3C-C -65-3C-C -65-3C-C -85-3C-C	8		- }		24.5
85 110 -85-3C-C	+			127	
		ı		130	
25 30 KGDF ^R / _L -25-3A-C	6			143	
0° 3 □25	8 2	5	7	145	29.5
110 145 -110-3B-C	.5			152	
05 85 -05-3C-C	_				
25 110 145 -110-3C-C 25 30 KGDF [®] / ₂ -25-3A-C	8	+		155	
13 30 40 -30-3A-C -40-3A-C	6			163	
	8 3	2	-	165	36.5
110 145 -110-3B-C 22 50 65 KGDF ^R / _L -50-3C-C	.5			172	
22 65 85 -65-3C-C 25 85 110 -85-3C-C 110 145 -110-3C-C	8			175	
13 25 35 KGDF% -25-4A-C	6		\dashv	118	
35 50 KGDF ⁺ / _L -35-4B-C 50 70 -50-4B-C					
100 150 -100-4B-C	8			120	
150 220 -150-4B-C	2	0	12		24.5
35 50 KGDF ^R / ₋ -35-4C-C 50 70 -50-4C-C			Ì		
70 100 -70.40	8			130	
150 220 <u>-150-4C-C</u>					
	6	+	\dashv	143	
35 50 KGDF ^F / _L -35-4B-C -50-4B-C				_	
70 100 -70-4R-C	8			145	
150 220 <u>-150-4B-C</u>					
0° 4 □25 □220 ∞ -220-4B-C KGD ^L /≈2525-C 25 25 □	+2	5	7		29.5
50 70 -50-4C-C -70-4C-C					
100 150 -100-4C-C	-8			155	
150 220 <u>-150-4C-C</u> 220 ∞ <u>-220-4C-C</u>					
13 25 35 KGDF ^R /L -25-4A-C	6	\top		163	
50 70 <u>-50-4B-C</u>					
15 70 100 -70-4B-C -100-4B-C	8			165	
150 220 -150-4B-C KGD ^L /s3232-C 32 32	,	2	_		36.5
35 50 KGDF ^R /L -35-4C-C	- 3	-	-		۵.۵۱
50 70 -50-4C-C -70-4C-C				175	
25 100 150 -100-4C-C -150-4C-C	8			175	
130 220 -130-4C-C 220 ∞ -220-4C-C					

1. KGDF: Lâmina direita para suporte esquerdo, lâmina esquerda para suporte direito.

Insertos aplicáveis 🍙 G111

 $0 \ suporte \'e \ aplic\'avel \ a \ todas \ as \ l\^aminas \ com \ sentido \ correspondente.$

^{2.} CDX: Profundidade máxima na qual o processamento pode ser realizado. (Caso o CDX seja de 20 mm ou mais, a profundidade máxima do canal feito pelo inserto de 2 arestas será de 18 mm.)

Os porta-ferramentas acima também são aplicáveis para corte.

^{3.} O parafuso de fixação do inserto (BH6X10TR), o parafuso de fixação da lâmina (SB-60120TR) e a chave (LTW-25) que estão incluídos no porta-ferramentas podem ser usados.

Dimensões do porta-ferramenta (Lâmina e suporte)

Ângulo da haste	rte CW (mm)	haste (mm)	orte CDX(mm)	exter	nal	Descr	ição da lâmina	Descrição do suporte			Dime	nsão	(mm))	
Ângulo	Largura de corte CW (mm	Tamanho da haste (mm)	Profund. máx. de corte CDX (mm	DAXN (min.)	DAXX (max.)	(⊕ G121	G43 G43	Н	В	LH	HF	HBH	LF	WF
			15	25 35 50 75 115 180	35 50 75 115 180 235	KGDF [®] /L	-25-5B-C -35-5B-C -50-5B-C -75-5B-C -115-5B-C -180-5B-C				38			120	
		□20	20	235 25 35 50	∞ 35 50 75	KGDF™	-235-5B-C -25-5C-C -35-5C-C -50-5C-C	- KGD ^L /≈2020-C	20	20	43	20	12	125	24.5
			25	75 115 180	115 180 235		-75-5C-C -115-5C-C -180-5C-C				48			130	
			32	235 75 115 180 235	∞ 115 180 235 ∞	KGDF [†] /L	-235-5C-C -75-5D-C -115-5D-C -180-5D-C -235-5D-C				55			137	
			15	25 35 50 75 115 180	35 50 75 115 180 235	KGDF [®] /L	-25-5B-C -35-5B-C -50-5B-C -75-5B-C -115-5B-C -180-5B-C				38			145	
			20	235 25	∞ 35	KGDF ^R /L	-235-5B-C -25-5C-C				43			150	
0°	5	□25	25	35 50 75 115 180 235	50 75 115 180 235 ∞		-35-5C-C -50-5C-C -75-5C-C -115-5C-C -180-5C-C -235-5C-C	KGD ^L /k2525-C	25	25	48	25	7	155	29.5
			32	75 115 180 235	115 180 235 ∞	KGDF%	-75-5D-C -115-5D-C -180-5D-C -235-5D-C				55			162	
			15	25 35 50 75 115 180 235	35 50 75 115 180 235 ∞	KGDF [®] /L	-25-5B-C -35-5B-C -50-5B-C -75-5B-C -115-5B-C -180-5B-C -235-5B-C				38			165	
			20	25	35	KGDF ^R /L	-25-5C-C				43			170	
		□32	25	35 50 75 115 180 235	50 75 115 180 235 ∞		-35-5C-C -50-5C-C -75-5C-C -115-5C-C -180-5C-C -235-5C-C	KGD ^L /≈3232-C	32	32	48	32	-	175	36.5
1 1/0)E. I ŝ.	nina	32 liroita	75 115 180 235	115 180 235 ∞	KGDF%L	-75-5D-C -115-5D-C -180-5D-C -235-5D-C lâmina esquerda	nara cunorto divai	to		55			182	

Insertos aplicáveis 🕞 G111

O suporte é aplicável a todas as lâminas com sentido correspondente.

2. CDX: Profundidade máxima na qual o processamento pode ser realizado. (Caso o CDX seja de 20 mm ou mais, a profundidade máxima do canal feito pelo inserto de 2 arestas será de 18 mm.)

Os porta-ferramentas acima também são aplicáveis para corte.

3. O parafuso de fixação do inserto (BH6X10TR), o parafuso de fixação da lâmina (SB-60120TR) e a chave (LTW-25) que estão incluídos no porta-ferramentas podem ser usados.

G

Canal

Externo Interno

Face

G

anal

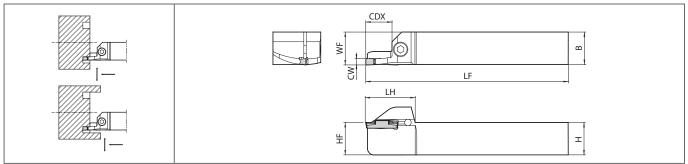
Dimensões do porta-ferramenta (Lâmina e suporte)

Ângulo da haste	Largura de corte CW (mm)	haste (mm)	orte CDX(mm)	exter	im. no do nal m)	Descr	ição da lâmina	Descrição do suporte			Dime	nsão	(mm))	
Ângulo	Largura de co	Tamanho da haste (mm)	Profund. máx. de corte CDX(mm)	DAXN (min.)	DAXX (max.)		→ G121	⊕ G43	Н	В	LH	HF	HBH	LF	WF
				25	35	KGDF%	-25-6B-C								
				35 50	50 75		-35-6B-C -50-6B-C								
			15	75	115		-75-6B-C				38			120	
			.5	115	180		-115-6B-C				30			1.20	
				180	235		-180-6B-C								
				235	∞		-235-6B-C								
			20	25	35	KGDF%	-25-6C-C				43			125	
		□20		35 50	50 75		-35-6(-(KGD ^L /R2020-C	20	20		20	12		24.5
				75	115		-50-6C-C -75-6C-C								
			25	115	180		-115-6C-C				48			130	
				180	235		-180-6C-C								
				235	∞		-235-6C-C								
				75	115	KGDF ^R /L	-75-6D-C								
			32	115	180		-115-6D-C				55			137	
			32	180	235		-180-6D-C				"			'5'	
				235	∞	KGDF%	-235-6D-C -25-6B-C								Н
				25 35	35 50	KGDF 7L	-25-6B-C								
				50	75		-50-6B-C								
			15	75	115		-75-6B-C				38			145	
				115	180		-115-6B-C								
				180	235		-180-6B-C								
				235	∞		-235-6B-C								
			20	25	35	KGDF%	-25-6C-C				43			150	
0°	6	□25		35 50	50 75		-35-6C-C -50-6C-C	KGD ^L /R2525-C	25	25		25	7		29.5
				75	115		-50-6C-C								
			25	115	180		-115-6C-C				48			155	
				180	235		-180-6C-C								
				235	∞		-235-6C-C								
				75	115	KGDF [®] /L	-75-6D-C								
			32	115	180		-115-6D-C				55			162	
				180 235	235 ∞		-180-6D-C								
				255	35	KGDF ^P /L	-235-6D-C -25-6B-C								
				35	50	INGDI 7E	-35-6B-C								
				50	75		-50-6B-C								
			15	75	115		-75-6B-C				38			165	
				115	180		-115-6B-C								
				180	235		-180-6B-C								
			20	235 25	∞ 35	KGDF ^R /L	-235-6B-C -25-6C-C				43			170	
			20	35	50	NGDF /L	-35-6C-C				43			1/0	
		□32		50	75		-50-6C-C	KGD ^L /R3232-C	32	32		32	-		36.5
			25	75	115		-75-6C-C				48			175	
			23	115	180		-115-6C-C				40			1/3	
				180	235		-180-6C-C								
				235	∞	VCDER/	-235-6C-C				<u> </u>			_	
				75 115	115 180	KGDF%	-75-6D-C -115-6D-C								
			32	180	235		-113-6D-C				55			182	
				235	∞		-100-0D-C								
1 VCI	NF. 1 3.	mina d	livoita			ocanordo	lâmina esquerda i	aara cunarta dirai	+-						

 $^{1.\} KGDF: L\^amina\ direita\ para\ suporte\ esquerdo, l\^amina\ esquerda\ para\ suporte\ direito.$

Insertos aplicáveis 🌒 G111

O suporte é aplicável a todas as lâminas com sentido correspondente.


2. CDX: Profundidade máxima na qual o processamento pode ser realizado. (Caso o CDX seja de 20 mm ou mais, a profundidade máxima do canal feito pelo inserto de 2 arestas será de 18 mm.)

Os porta-ferramentas acima também são aplicáveis para corte.

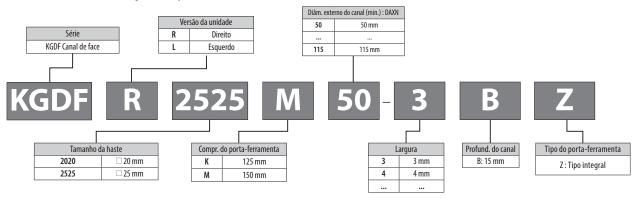
3. O parafuso de fixação do inserto (BH6X10TR), o parafuso de fixação da lâmina (SB-60120TR) e a chave (LTW-25) que estão incluídos no porta-ferramentas podem ser usados.

Canal de face KGDF-Z

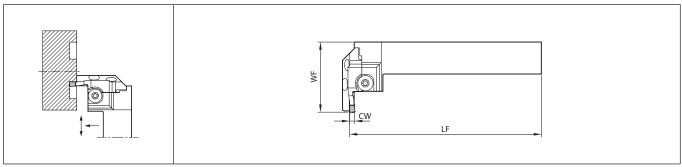
KGDF-Z (Canal de face)

Mostrado versão à direita

Dimensões do porta-ferramenta



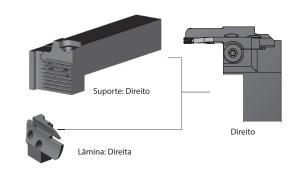
Canal


Externo Interno Face

				Diâ	m									Peças de	reposição	
	Descrição	Disp bilid		exte do c (m	erno anal			Dir	nens	ão (m	m)			Parafuso de fixação	Chave	Insertos aplicáveis G111
		R	L	DAXN (min.)	DAXX (max.)	CW	CDX	Н	В	LH	HF	LF	WF			O
KGDF ^R /L	2020K50-3B-Z	•	•	50	65											
	2020K65-3B-Z	•	•	65	85			20	20		20	125	20.3			
	2020K85-3B-Z	•	•	85	110			20	20		20	123	20.5			GDFM 3020
	2020K110-3B-Z	•	•	110	145	3	15			30.5				HH5X16	LW-4	GDFMS 3020
	2525M50-3B-Z	•	•	50	65	,	כו			30.5				IIIIJATO	LVV-4	GDFG 3020
	2525M65-3B-Z	•	•	65	85			25	25		25	150	25.3			
	2525M85-3B-Z	•	•	85	110			23	23		23	150	25.5			
	2525M110-3B-Z	•	•	110	145											
KGDF ^R /L	2020K50-4B-Z	•	•	50	70											
	2020K70-4B-Z	•	•	70	100			20	20		20	125	20.3			GDFM 4020
	2020K100-4B-Z	•	•	100	150	4	15			30.5				HH5X16	LW-4	GDFMS 4020
	2525M50-4B-Z	•	•	50	70	7	כו			30.5				IIIIJATO	LW	GDFG 4020
	2525M70-4B-Z	•	•	70	100			25	25		25	150	25.3			
	2525M100-4B-Z	•	•	100	150											
KGDF [®] /∟	2020K50-5B-Z	•	•	50	75											
	2020K75-5B-Z 2020K115-5B-Z 2525M50-5B-Z 2525M75-5B-Z	•	•	75	115			20	20		20	125	20.3			GDFM 5020
		•	•	115	180	5	15			30.5				HH5X16	LW-4	GDFMS 5020
		•	•	50	75		כו			0.5				טואכוווו	LVV	GDFG 5020
		•	•	75	115			25	25		25	150	25.3			
	2525M115-5B-Z	•	•	115	180											

Sistema de identificação do porta-ferramenta KGDF-Z

KGDF (Canal de face / Tipo destacável 90°)


Mostrado versão à direita (Lâmina direita e suporte direito)

Dimensões do porta-ferramenta (Lâmina e suporte)

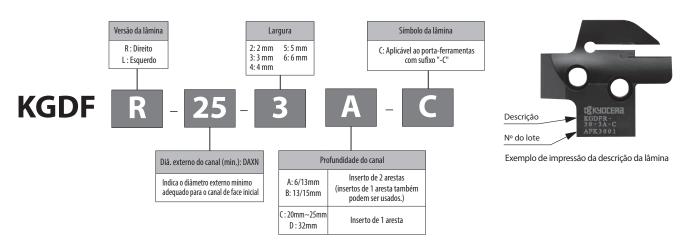
la haste	rte CW (mm)	haste (mm)	orte CDX(mm)	cai	no do nal	Descr	ição da lâmina	Descrição do		ensão m)
Ângulo da haste	Largura de corte CW (mm	Tamanho da haste (mm)	Profund. máx. de corte	externo do canal (mm) □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	<i></i>	suporte G42	LF	WF		
		□20	13	30 35 45 60 80 100 25 30 35 45 60 80	35 45 60 80 100 130 30 35 45 60 80		-30-2A-C -35-2A-C -45-2A-C -60-2A-C -100-2A-C -100-2A-C -30-2B-C -35-2B-C -35-2B-C -60-2B-C -80-2B-C	KGDSR2020-C	125	49.7 52.7 54.7
90°	2	□25	6 13	25 30 35 45 60 80 100 25 30 35 45 60 80	30 35 45 60 80 100 130 30 35 45 60 80		-25-2A-C -30-2A-C -35-2A-C -45-2A-C -60-2A-C -100-2A-C -25-2B-C -30-2B-C -35-2B-C -60-2B-C -80-2B-C	KGDSR2525-C	150	49.7 52.7 54.7
000		□20	13 15 22 25	25 30	30 40	KGDF%.	-25-3A-C -30-3A-C	KGDS [®] ¼. 2020-C	125	52.7 54.7 59.7 61.7
90°	3	□25	13 15 22 25	25 30 40 50 65 85 110 50 65 85	30 40 50 65 85 110 145 65 85 110	KGDF [®] / _L KGDF [®] / _L	-25-3A-C -30-3A-C -40-3A-C -50-3B-C -65-3B-C -85-3B-C -110-3B-C -50-3C-C -65-3C-C -85-3C-C -110-3C-C	KGDS [®] /. 2525-C	150	52.7 54.7 59.7 61.7

Ângulo da haste	Largura de corte CW (mm)	Tamanho da haste (mm)	Profund. máx. de corte CDX (mm)	Diâ exter cai (m	no do nal	Descriç	ão da lâmina	Descrição do suporte		ensão m)
Ângulo	Largura de co	Tamanho da	Profund. máx. de	DAXN (min.)	DAXX (max.)	•	G121	⊕ G42	LF	WF
			13	25	35	KGDFR	-25-4A-C			52.7
				35	50	KGDFR	-35-4B-C			
				50	70		-50-4B-C			
			15	70	100		-70-4B-C			54.7
			15	100	150		-100-4B-C			JT./
				150	220		-150-4B-C			
		□20		220	∞		-220-4B-C	KGDS% 2020-C	125	
				35	50	KGDFR	-35-4C-C			
				50	70		-50-4C-C			
			25	70	100		-70-4C-C			64.7
				100	150		-100-4C-C			
				150	220		-150-4C-C			
90°	4		12	220	∞	VCDED	-220-4C-C			F2.7
			13	25 35	35 50	KGDFR	-25-4A-C -35-4B-C			52.7
				50	70	KGDFR	-50-4B-C			
				70	100		-70-4B-C			
			15	100	150		-100-4B-C			54.7
				150	220		-150-4B-C			
		<u>25</u>		220	∞		-220-4B-C	KGDS [®] /∟2525-C	150	
				35	50	KGDFR	-35-4C-C	RGDS 7-2323 C	130	
				50	70		-50-4C-C			
			25	70	100		-70-4C-C			
			25	100	150		-100-4C-C			64.7
				150	220		-150-4C-C			
				220	~		-220-40-0			

Insertos aplicáveis 🍙 G111

- · O tipo KGDF 90° não está disponível como unidade (suporte + lâmina). Adquira o suporte e a lâmina separadamente.
- $\cdot L \hat{a} mina \ direita \ para \ suporte \ direito, l \hat{a} mina \ esquerda \ para \ suporte \ esquerdo.$
- · O parafuso de fixação do inserto (BH6X10TR), o parafuso de fixação da lâmina (SB-60120TR) e a chave (LTW-25) que estão incluídos no porta-ferramentas podem ser usados.

Canal de face KGDF


Dimensões do porta-ferramenta (Lâmina e suporte)

Ângulo da haste	Largura de corte CW (mm)	Tamanho da haste (mm)	Profund. máx. de corte CDX(mm)	DAXN (min.)	no do nal		ição da lâmina → G121	Descrição do suporte G43		ensão im) WF	Ângulo da haste	Largura de corte CW (mm)	Tamanho da haste (mm)	Profund. máx. de corte CDX(mm)			,	ão da lâmina o G121	Descrição do suporte G43		ensão nm) WF
90°	5	□20 l	15 20 25	25 35 50 75 115 180 235 25 35 50 75 115 180 235 75 115 180 235	35 50 75 115 180 235 ∞ 50 75 115 180 235 ∞ 115 180 235 ∞ ∞ ∞ 115 ∞ ∞ 115 ∞ ∞ 115 ∞ ∞ 115 180 ∞ 115 180 180 190 190 190 190 190 190 190 19	KGDF%. KGDF%.	-25-5B-C -35-5B-C -50-5B-C -75-5B-C -115-5B-C -180-5B-C -235-5B-C -25-5C-C -35-5C-C -50-5C-C -75-5C-C -115-5C-C -115-5D-C -1180-5D-C -180-5D-C	KGDS ⁸ /L2020-C	125	54.7 59.7 64.7 71.7	90°	6	□20	15 20 25	25 35 50 75 115 180 235 25 35 50 75 115 180 235 75 115 180 235	35 50 75 115 180 235 ∞ 50 75 115 180 235 ∞ 115 180 235 ∞ ∞ 115 ∞ ∞ 115 ∞ ∞ 115 ∞ ∞ 115 180 180 190 190 190 190 190 190 190 19	KGDF [®] /L KGDF [®] /L	-25-68-C -35-68-C -50-68-C -75-68-C -115-68-C -235-68-C -235-66-C -35-6C-C -50-6C-C -115-6C-C -180-6C-C -235-6C-C -115-6D-C -180-6D-C -235-6D-C	KGDS [®] /⊾2020-C	125	54.7 59.7 64.7
90	3	□25	15 20 25 32	25 35 50 75 115 180 235 25 35 50 75 115 180 235 75 115 180 235	35 50 75 115 180 235 ∞ 35 50 75 115 180 235 ∞ 115 180 235 ∞ ∞ 235 ∞ 235 ∞ 235 ∞ 235 ∞ 235 ∞ 235 ∞ 235 ∞ 235 ∞ 235 ∞ 235 ∞ 235 ∞ 235 ∞ 235 ∞ ∞ 235 ∞ ∞ 235 ∞ ∞ 235 ∞ ∞ 235 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞	KGDF%L KGDF%L	-25-5B-C -35-5B-C -50-5B-C -75-5B-C -115-5B-C -180-5B-C -235-5B-C -235-5C-C -35-5C-C -75-5C-C -115-5C-C -115-5C-C -75-5D-C -115-5D-C -180-5D-C -235-5D-C	KGDS [®] ∕⁄, 2525-C	150	54.7 59.7 64.7 71.7	90	0	□25	15 20 25	25 35 50 75 115 180 235 25 35 50 75 115 180 235 75 115 180 235 235 235 235 235 235 235 235	35 50 75 115 180 235 ∞ 35 50 75 115 180 235 ∞ 115 180 235 ∞ 235 ∞	KGDF [®] /L KGDF [®] /L	-25-68-C -35-68-C -50-68-C -75-68-C -115-68-C -235-68-C -235-66-C -35-66-C -115-6C-C -180-6C-C -75-6D-C -115-6D-C -180-6D-C -235-6D-C	KGDS [®] ∕⁄. 2525-C	150	54.7 59.7 64.7 71.7

 $[\]cdot \ 0 \ tipo \ KGDF \ 90^{\circ} \ n\~{a}o \ est\'{a} \ disponível \ como \ unidade \ (suporte+l\^{a}mina). \ Adquira \ o \ suporte \ e \ a \ l\^{a}mina \ separadamente.$

Insertos aplicáveis 🍙 G111

Sistema de identificação da lâmina de canal de face

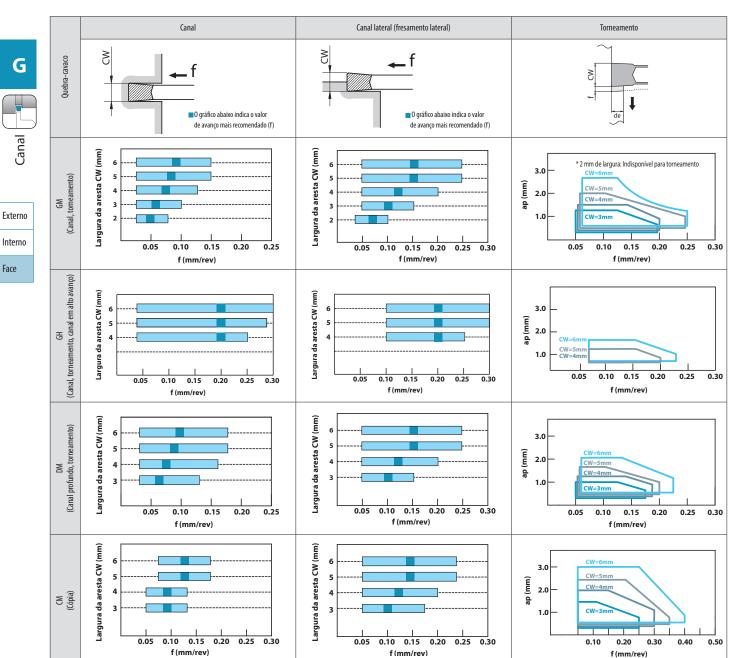
Externo Interno

Face

[·] Lâmina direita para suporte direito, lâmina esquerda para suporte esquerdo.

[·] O parafuso de fixação do inserto (BH6X10TR), o parafuso de fixação da lâmina (SB-60120TR) e a chave (LTW-25) que estão incluídos no porta-ferramentas podem ser usados.

Dimensões da lâmina


Disponibilidade externo Dimensão (mm) Largura de corte CW (I Porta-ferramentas do canal Insertos aplicáveis (mm) Descrição da lâmina aplicáveis Formato → G111 (max. min. → G43 R Α DAXN DAXX KGDFR -25-2A-25 30 30 35 • -30-2A-0 • • 45 45 -45-2A-• 60 44.35 • 60 80 -80-2A-C -100-2A-C -100-2A-C -25-2B-C -30-2B-C 80 100 100 130 • • 1.5 GDFM 2020N-020GM KGDFR • 30 35 45 47.35 13 30 • -35-2B-0 • 35 -45-2B-0 45 60 49.35 15 -60-2B-0 80 • 60 100 -80-2B-0 80 100 130 -100-2B-0 KGDF^R/L -25-3A-C 30 -30-3A-• • 30 40 47.35 • • 40 • 50 • 65 • 85 -50-3B-65 GDFM 3020... 85 110 -65-3B-0 49.35 85 110 110 145 2 3 GDFMS 3020... -110-3B-0 GDFG 3020... KGDF^R/L -50-3C-0 • • 50 65 56.35 22 • 65 • 85 • 110 -65-3C-C 85 110 59.35 -110-3C-C 145 • • 25 • • 35 KGDF^R/L -25-4A-C 47.35 13 50 50 70 100 150 -50-4B-0 70 -70-4B-100 49.35 15 150 -100-4B-GDFM 4020... -150-4B-0 -220-4B-0 220 • 220 3 4 GDFMS 4020... KGDF^R/L -35-4C-0 • • 35 50 GDFG 4020... -50-4C-(• • 50 70 ● 70 100 ● 100 150 ● 150 220 ● 220 ∞ -70-4C-C -100-4C-C -150-4C-C 59.35 KGD^L/R....-C -220-4C-0 KGDS^R/L....-C 220 25 35 50 50 75 115 180 327 -25-5B-0 KGDF% -50-5B-C -75-5B-C -115-5B-C 49.35 15 -180-5B-0 180 235 -235-5B-C -25-5C-C -35-5C-C -50-5C-C 235 ∞ 35 25 35 50 75 GDFM 5020... 54.35 20 50 75 5 GDFMS 5020... 115 GDFG 5020... 59.35 25 115 180 180 235 -115-5C-0 -180-5C-C -235-5C-C -75-5D-C 235 • • 75 115 115 180 235 25 35 -115-5D-C -180-5D-C -235-5D-C 180 235 66.35 32 ∞ 35 -25-6B-0 KGDF^R/L 50 50 75 115 180 180 235 235 -50-6B-0 75 115 49.35 15 -115-6B--180-6B--235-6B-0 25 35 50 75 GDFM 6020... -25-6C-0 35 54.35 20 50 75 -35-6C-(6 GDFMS 6020... -50-6C-C -75-6C-C -115-6C-C 115 GDFG 6020... 59.35 25 115 180 180 235 -180-6C-0 -235-6C-0 235 -75-6D-C -115-6D-C • 75 115 • 115 180 • 180 235 66.35 32 -180-6D-0 -235-6D-C

Diâm.

Condições de corte recomendadas

	Cla	asses de insertos reco	mendadas (Vc: m/m	in)	ções
Material	Ceri	met	MEGA	ACOAT	Observações
	TN620	TN90	PR1225	PR1215	Obs
A co carbono	☆	☆	*	☆	
Aço carbono	60~200	80~200	60~160	80~160	
Aço liga	☆	☆	*	☆	ıção
Aço ilga	60~160	70~160	60~150	60~150	igera
Aco inovidával			*	☆	Com refrigeração
Aço inoxidável	-	-	50~120	50~120	S E
Ferro fundido				*	
reno iundido	-	-	_	80~160	

★: 1ª recomendação ☆: 2ª recomendação

No caso de expansão lateral

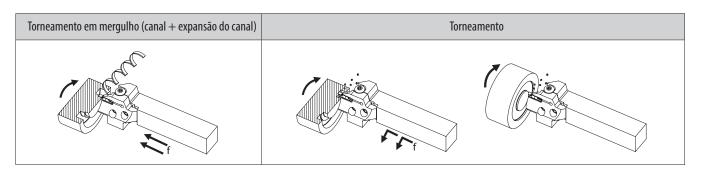
Material: C50

- \bullet Se ap for menor, defina um avanço mais alto.
- Se ap for maior, defina um avanço mais baixo.
- 1. Os valores acima são baseados na condição em que o CDX do porta-ferramentas seja de 15 mm ou menos.
- 2. Se o CDX do porta-ferramenta for superior a 15 mm, defina os valores para torneamento em 90% ou menos dos acima.

Guia para canal de face

1. Seleção do porta-ferramenta

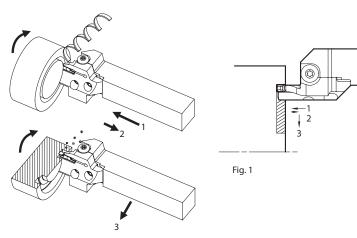
Verifique a faixa de "diâm. externo do canal" aplicável, bem como a largura e a profundidade do canal.


2. Condições de corte (taxa de avanço:f)

Na usinagem em aço, defina a taxa de avanço (f) para que os cavacos sejam criados em uma forma helicoidal no corte.

3. Como alargar o canal (fresamento em mergulho e torneamento)

Inicie a usinagem de fora para dentro.


O controle do cavaco será melhor assim.

4. Guia para torneamento

A. Quando a profundidade de corte (ap) for superior a 0,5 mm

- 1. Execute o canal em mergulho.
- Retorne a ferramenta 0,1 mm. Deixar de retornar a ferramenta para trás antes da usinagem transversal resultará em uma carga desequilibrada aplicada em apenas um lado da aresta de corte.
- 3. Realize o torneamento (consulte a Fig. 1)

Ao alargar a largura da face do canal (consulte a Fig. 2). Aplique o "torneamento gradual". Em seguida, execute o acabamento.

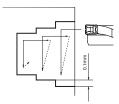
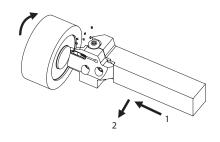
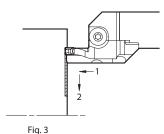




Fig. 2

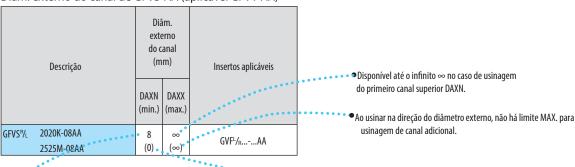
B. Quando o (ap) for inferior a 0,5 mm

- 1. Execute o canal em mergulho.
- Realize o torneamento.
 É possível usinar sem interrupção.
 (consulte a Fig. 3)

GVF-AA

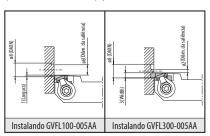
			Aço	carbono	/ Aço liga	1									P
			Aço	inoxidáv	rel										M
			Feri	ro fundid	0								-	•	K
			Met	tais não f	errosos								-	•	N
			Liga	as de titâ	nio								-	•	S
			Mat	teriais du	ros (~ 40	HRC)									н
			Mat	teriais du	ros (40HF	RC ~)						П	Т		п
			П			Dimone	io (mm)			Toler	ância	M	etal		
						Dillielise	10 (111111)			(m	m)	dı	uro		
Inc	serto	Nº de arestas									PVI	D	-	Porta-ferramenta aplicável	
III3	ecito	Descrição	N° de	CW	CDX	S	RE	INSL	W1	CW min.	CW max.	PR1225	PR930	KW10	G125
	RE 2 RE CDX CW±0.02	GVFR 100-005AA 200-005AA 300-005AA		1 2 3	2.2	4.5	0.05	12	4.2	0.02	. 0.03	•	•	•	GFVSL08AA GFVTL08AA
	10° 10°	GVFL 100-005AA 200-005AA 300-005AA	2	1 2 3	2.2	4.5	0.05	12	4.3	- 0.02	+ 0.02	•	•	•	GFVSR08AA GFVTR08AA

CDX exibe a profundidade de canal disponível.

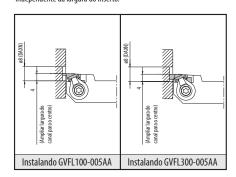

Externo

Interno

Face


Os insertos GVF^F/L....005AA não são compatíveis com GVF^F/L....-COA (consulte a pág. **G126**) porque seu ângulo de folga lateral é de 10°.

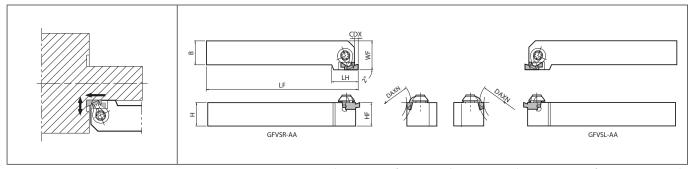
Diâm. externo do canal de GFVS-AA (aplicável GFVT-AA)


●Ão usinar o canal inicial na face em DAXN ø8

Caso o canal inicial seja menor que esse valor, o porta-ferramenta interfere na peça

Usinagem até o centro da peça independente da largura do inserto.

• Ao alargar a largura do canal para o diâmetro interno.


Condições de corte recomendadas GFVS-AA / GFVT-AA

	Clas	sse recomendada (Vc: m/m	in)	Canal	Tornear	monto*	
Material	MEGACOAT	Metal duro PVD	Metal duro	Callal	ionieai	nento"	Observações
	PR1225	PR930	KW10	f (mm/rev)	ap (mm)	f (mm/rev)	1
Aço carbono / Aço liga	★ 50~100	☆ 50~100		0.01~0.05	Max. 0.5	0.01~0.05	
Aço inoxidável	★ 50~80	☆ 50~80		0.01~0.03	Max. 0.3	0.01~0.02	Com refrig.
Metais não ferrosos			★ ~200	0.01~0.08	Max. 0.5	0.01~0.08	

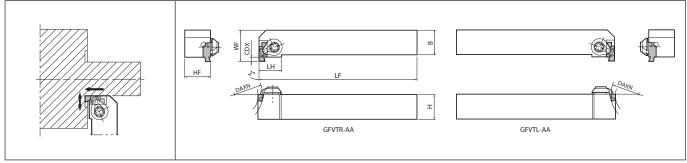
^{*} ap deve ser definido para menor que o raio R(RE) no torneamento com largura de aresta de 1,0 mm (GVF % 100-005AA).

^{★ :1}ª recomendação ☆:2ª recomendação

GFVS-AA (Canal de face)

Inserto esquerdo para porta-ferramenta direito, inserto direito para porta-ferramenta esquerdo

Dimensões do porta-ferramenta


													Peças de l	reposição	
	Descrição	Disp bilid			externo al (mm)			Dime	nsão	(mm)			Conjunto do grampo	Chave	Insertos aplicáveis G124
		R	L	DAXN (min.)	DAXX (max.)	XO	Н	В	LH	HF	LF	WF			Ü
GFVS ^P /L	2020K-08AA	•	•	8	∞	2.2	20	20	10	20	125	25	CPS-5V	FT-15	GVF ^L / _R AA
	2525M-08AA	•	•	(0)	(∞)	2.2	25	25	18	25	150	32	(L2-2)	F1-13	GVF-/RAA

CDX exibe a profundidade de canal disponível.

0 valor () do diâm. externo do canal (DAXX) é o valor do diâmetro externo máximo após o canal inicial entre DAXN ~ DAXX. (é possível ampliar o canal para o infinito ∞).

O valor () do diâm. interno do canal (DAXN) é o diâmetro mínimo da saliência remanescente no centro ao ampliar a largura do canal para um valor inferior após o canal inicial entre DAXN ~ DAXX.

GFVT-AA (Canal de face)

Inserto esquerdo para porta-ferramenta direito, inserto direito para porta-ferramenta esquerdo

Dimensões do porta-ferramenta

													Peças de i	reposição	
	Descrição			Diâm. 6 do cana				Dime	nsão	(mm)			Conjunto do grampo	Chave	Insertos aplicáveis G124
		R	L	DAXN (min.)	DAXX (max.)	CDX	Н	В	LH	HF	LF	WF			
GFVT ^R /L	2020K-08AA	•	•	8	∞	2.2	20	20	14	20	125	25	CDC EV	FT 15	CVEL/ AA
	2525M-08AA	•	•	(0)	(∞)	2.2	25	25	14	25	150	32	CPS-5V	FT-15	GVF ^L / _R AA

CDX exibe a profundidade de canal disponível.

0 valor () do diâm. externo do canal (DAXX) é o valor do diâmetro externo máximo após o canal inicial entre DAXN ~ DAXX. (é possível ampliar o canal para o infinito ∞).

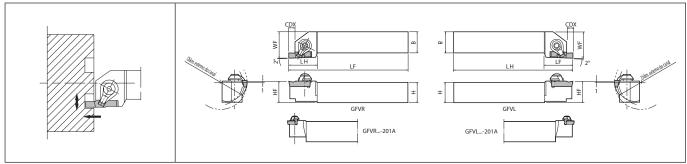
O valor () do diâm. Interno do canal (DAXN) é o diâmetro mínimo da saliência remanescente no centro ao ampliar a largura do canal para um valor inferior após o canal inicial entre DAXN ~ DAXX.

GVF

Externo Interno

Face

				Açı	carbono	/ Aço liga							•	9				Р
				Açı	inoxidá	rel .							•	9				М
					ro fundid								Ц	•				K
					tais não i									6			•	N
					as de titâ	nio iros (~ 40	HRC)						•					S
						ros (40HF									$^{+}$	H		Н
							Dimens	آم (mm)			Toler	ância	М	etal	C	er-	PCD	
				\ s) IIII	io (iiiii)			(m	m)	d	uro	n	net	Ь	Dorta forramenta
l			December .	resta									PV	D -		-	-	Porta-ferramenta aplicável
In:	serto		Descrição	N° de arestas	CW	CDX	S	RE	INSL	W1	CW	CW		T	T		(● G127~
				z							min.	max.	R122	PR930	740N	TC60M	KPD010	G129
															Ĺ			
		GVFR	200-020A		2								•	•	•	•		
			230-020A 250-020A		2.3 2.5								•					GFVR201A
			270-020A 270-020A		2.5											Ĭ		GIFVR201A
			290-020A		2.9								•	•	•			
			340-020A	2	3.4	2.3	4.5	0.2	12	4.2	- 0.03	. 0.02	•	•	•			
		GVFL	200-020A	4	2	2.3	4.5	0.2	12	4.3	- 0.03	+ 0.03	•	•	•	•		
			230-020A		2.3								•					
			250-020A 270-020A		2.5								•					GFVL201A
			290-020A		2.7 2.9													GIFVL201A
			340-020A		3.4								•	•				
		GVFR	250-020B	Н	2.5	4.8							•	• (•	•		GFVR1B **
			300-020B		3	4.8							•	•	•	•		GFVSL1B GFVTL1B
			350-020B	ļ	3.5	4.8							•	•	•	•		GIFVR1B
			400-020B		4	5.3							•	•	•	•		GFVR2B *2
	RE		430-020B		4.3	5.3							•			•		GFVSL2B GFVTL2B
AL PARTY	CDX 2 CW±0.03		460-020B 490-020B		4.6 4.9	5.3 5.3												GIFVR2B
	CDX CW±0.03	GVFL	250-020B	2	2.5	4.8	5	0.2	20	5.8	- 0.03	+ 0.03	•			•		GFVL1B *
1	13° 13°	02	300-020B		3	4.8							•	•	•	•		GFVSR1B GFVTR1B
			350-020B	ļ	3.5	4.8							•	•	•	•		GIFVL1B
			400-020B		4	5.3							•	•	•	•		GFVL2B *4
			430-020B		4.3	5.3							•			•		GFVSR2B GFVTR2B
			460-020B 490-020B		4.6 4.9	5.3 5.3												GIFVL2B
		GVFR	350-040C	H	3.5	6.8							•			•		GFVR1C *5
		- CVIII	400-040C		4	6.8							•	•	•	•		GFVSL1C GFVTL1C
			450-040C	J	4.5	6.8							•	•	•	•		GIFVR1C
			500-040C		5	8.3							•	•	•	•		GFVR2C GFVSL2C
			550-040C		5.5	8.3							•			•		GFVTL2C
		GVFL	600-040C 350-040C	2	3.5	8.3 6.8	7	0.4	27	7	- 0.03	+ 0.03						GIFVR2C GFVL1C
		GVIL	400-040C		4	6.8							•	•		•		GFVSR1C
			450-040C		4.5	6.8							•	•	•	•		GFVTR1C GIFVL1C
			500-040C		5	8.3							•	•	•	•		GFVL2C GFVSR2C
			550-040C 600-040C		5.5 6	8.3							•			•		GFVTR2C
		GVFR	250-020B	H		8.3 4.8							•	•			•	GIFVL2C
	RE	GVFK	300-020B		2.5 3	4.8											•	*1
	CDX 2°		400-020B		4	5.3	-		20				i			<u> </u>	MTO	*2
		GVFL	250-020B	1	2.5	4.8	5	0.2	20	5.8	- 0.03	+ 0.03					•	*3
1	NSL CW±0.03		300-020B		3	4.8										ļ	•	
*	1 aresta	CVED	400-020B	-	4	5.3	_			_	0.05						MT0	*4
		GVFR	350-040C	1	3.5	6.8	7	0.4	27	7	- 0.03	+ 0.03					MT0	*5
		GVFR	200-100AR 250-125AR		2			1.25					•					GFVR201A
			250-125AK 300-150AR		2.5 3			1.25					•					GIFVR201A
		GVFL	200-100AR	2	2	2.3	4.5	1.5	12	4.3	- 0.03	+ 0.03	•					
	CDX 2° CW±0.03		250-125AR		2.5			1.25					•					GFVL201A GIFVL201A
1	CDX 22 CW±0.03		300-150AR	L	3			1.5					•	•				
		GVFR	300-150BR	ļ	3	4.8		1.5					•	•			<u>.</u>	*1
	Raio completo	CVE	400-200BR	2	4	5.3	5	2	20	5.8	- 0.03	+ 0.03	•	•				<u>*2</u>
	I	GVFL	300-150BR	I	3	4.8	l	1.5	l	l	1	1			1			*3
			400-200BR		4	5.3		2			T				1			*4


Mostrado versão à direita CDX exibe a profundidade de canal disponível.

●: Item standard MT0: Produzido sob pedido

Condições de corte recomendadas igoplus G146

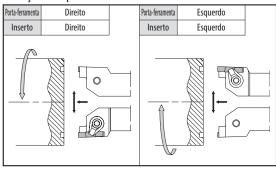
Insertos CBN e PCD são vendidos em caixa com 1 peça

GFV (Canal de face)

Inserto direito para porta-ferramenta direito, inserto esquerdo para porta-ferramenta esquerdo.

Dimensões do porta-ferramenta

														Peças de	reposição		
	Descrição		oni- lade		externo al (mm)			Dime	nsão	(mm))		Conjunto do grampo	Conjunto do grampo	Chave	Chave	Insertos aplicáveis G126
		R	L	DAXN (min.)	DAXX (max.)	XOX	Н	В	LH	HF	LF	WF					
GFV ^P /L	2020K-201A	•	•	20	∞	2.2	20	20	20	21	125	25	CPS-5V			FT-15	GVF% 200 ~ 340A
	2525M-201A	•	•	(12)	(∞)	2.2	25	25	23	26	150	32	CF3-3V	-	-	F1-13	GVF%200 ~ 300AR
GFV ^P /L	2020K-351B	•	•			4.6	20	20	28	21	125	25					GVF [®] / ₂₅₀ ~ 350B
	2525M-351B	•	•	35	50	4.0	25	25	30	26	150	32					GVF%300-150BR
	2020K-352B	•	•	(25)	(∞)	5.1	20	20	28	21	125	25					GVF% 400 ~ 490B
	2525M-352B	•	•			5.1	25	25	30	26	150	32					GVF% 400-200BR
	2020K-501B	•	•			4.6	20	20	28	21	125	25					GVF%250 ~ 350B
	2525M-501B	•	•	50	70	4.0	25	25	30	26	150	32	_	CPS-6V	LW-3	_	GVF% 300-150BR
	2020K-502B	•	•	(25)	(∞)	5.1	20	20	28	21	125	25		CI 3-0V	LVV-5		GVF ^R /₄400 ~ 490B
	2525M-502B	•	•			3.1	25	25	30	26	150	32					GVF%400-200BR
	2020K-701B	•	•			4.6	20	20	28	21	125	25					GVF [®] /∟250 ~ 350B
	2525M-701B	•	•	70	100	1.0	25	25	30	26	150	32					GVF%300-150BR
	2020K-702B	•	•	(25)	(∞)	5.1	20	20	28	21	125	25					GVF%400 ~ 490B
	2525M-702B	•	•			5.1	25	25	30	26	150	32					GVF% 400-200BR
GFV ^R /L	2525M-501C	•	•	50	70	6.6											GVF%350 ~ 450C
	2525M-502C	•	•	(25)	(∞)	8.1											GVF ^R /∟500 ~ 600C
	2525M-701C	•	•	70	100	6.6											GVF%350 ~ 450C
	2525M-702C	•	•	(25)	(∞)	8.1	25	25	35	26	5 150 32 - CPS-8V LV			LW-4	_	GVF ^R /∟500 ~ 600C	
	2525M-1001C	•	•	100	150	6.6		23	"	ا ا	.50	"					GVF%350 ~ 450C
	2525M-1002C	•	•	(25)	(∞)	8.1											GVF%500 ~ 600C
	2525M-1501C	•	•	150	250	6.6											GVF%350 ~ 450C
	2525M-1502C	•	•	(25)	(∞)	8.1											GVF ^R /∟500 ~ 600C


CDX exibe a profundidade de canal disponível.

0 valor () do diâm. externo do canal (DAXX) é o valor do diâmetro externo máximo após o canal inicial entre DAXN ~ DAXX. (é possível ampliar o canal para o infinito ∞).

O valor () do diâm. interno do canal (DAXN) é o diâmetro mínimo da saliência remanescente no centro ao ampliar a largura do canal para um valor inferior após o canal inicial entre DAXN ~ DAXX.

Os porta-ferramentas padrão são projetados com a posição da aresta 1,0mm acima do centro. Ao usar porta-ferramentas não padronizados, defina a posição da aresta 1,0mm acima do centro.

Seleção do porta-ferramenta e do inserto

: Item standard

Interno

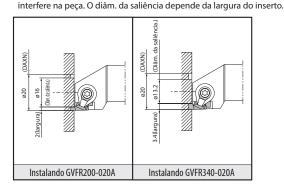
Face

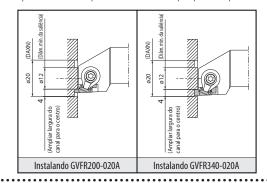
Diâm. externo do canal do GFV

(1) ex.) GFV^R/L...-201A

Donation.	Diâm. ext		landa di Anta
Descrição	DAXN (min.)	DAXX (max.)	Insertos aplicáveis
GFV ^R /L 2020K-201A	20	∞	GVF ^R /∟200 ~ 340•A
2525M-201A	(12)	(∞)	GVF ^R /∟200 ~ 300AR

Caso o canal inicial seja menor do que isso, o porta-ferramentas


Disponível até o infinito ∞ no caso de usinagem do primeiro canal superior DAXN.


• Ao usinar na direção do diâmetro externo, não há limite MAX. para usinagem de canal adicional.

• Ao usinar o canal inicial na face em DAXN ø20

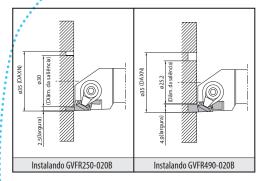
• Ao alargar a largura do canal para o diâmetro interno.

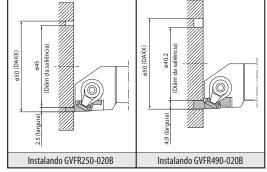
O diâmetro do canal de face DAXN (12) é o limite; o porta-ferramenta interfere na peça quando inferior a ø12. O porta-ferramenta interfere na pela quando está próximo ao centro.

(2) ex) GFV[®]/....-351B/352B (igual a GFV[®]/....-○○○ B ou GFV[®]/....-○○○C)

		=	
December 2	Diâm. ext		la contra contra forcia
Descrição	DAXN	DAXX	Insertos aplicáveis
	(min.)	(max.)	
GFV ^P / _L 2020K-351B			GVF [®] /∟250 ~ 350B
2525M-351B	• • 35	• 50	GVF%L300-150BR
2020K-352B	• (25)	(∞)•	GVF ^R /∟400 ~ 490B
2525M-352B			GVF%.400-200BR
	_		

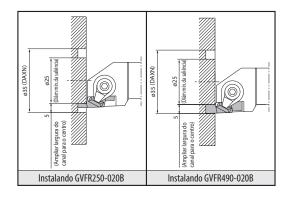
É possível alargar o canal até o infinito ∞ no caso de usinagem do canalinicial dentro da faixa DAXN ~ DAXX e então ampliando para o diâmetro externo.

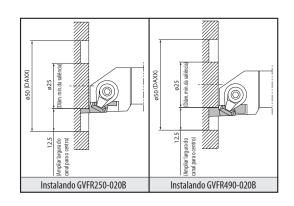

Ao usinar o canal inicial na face em DAXN ø35

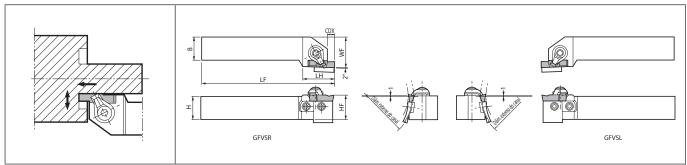

Caso o canal inicial seja menor do que isso, o porta-ferramentas

interfere na peça.O diâm. da saliência depende da largura do inserto.

• Na usinagem do canal inicial na face em DAXX ø50.


Caso o canal inicial seja feito maior que isso, o porta-ferramenta interfere na peça. O diâm. da saliência depende da largura do inserto




Ao ampliar a largura do canal para o diâmetro interno.

O diâm. da saliência ø25 é a limitação independentemente da largura do inserto, até mesmo ampliando a largura do canal para o centro a partir do canal inicial em DAXN (ø35) ou DAXX (ø50). O porta-ferramenta interfere na peça quando está mais próximo ao centro.

GFVS (Canal de face)

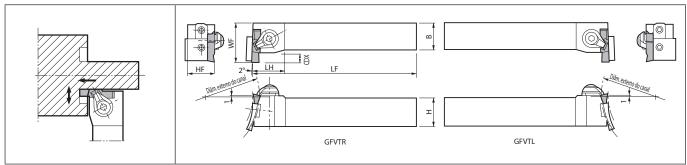
Inserto esquerdo para porta-ferramenta direito, inserto direito para porta-ferramenta esquerdo Este porta-ferramenta pode usinar vários diâmetros de canal de face com a substituição da lâmina.

Dimensões do porta-ferramenta

														Peças de	reposição		
	Descrição			Diâm. 6 do cana			Dir	nens	ão (m	m)			Lâmina	Parafuso	Conjunto do grampo	Chave	Insertos aplicáveis G126
		R	L	DAXN (min.)	DAXX (max.)	CDX	Н	В	LH	HF	LF	WF					
GFVS ^R /L	2020K-351B	•	•			5.1 (4.6)	20	20	30	21	125	_	SF%-351B				GVF ^L / _R 250 ~ 350B
	2525M-351B	•	•	35	50	3.1 (4.0)	25	25	32	26	150	32	3F /L-3310				GVF ^L / _R 300-150BR
	2020K-352B	•	•	(25)	(∞)	5.1 (5.1)	20	20	30	21	125	25	SF [®] /∟-352B				GVF ^L / _R 400 ~ 490B
	2525M-352B	•	•			3.1 (3.1)	25	25	32	26	150	32	JI /L-3320				GVF ^L / _R 400-200BR
	2020K-501B	•	•			5.1 (4.6)	20	20	30	21	125	25	SF ^R /L-501B				GVF ^L / _R 250 ~ 350B
	2525M-501B	•	•	50	70	3.1 (4.0)	25	25	32	26	150	32	31 72 3010	HH4X12	CPS-6V	LW-3	GVF ^L / _R 300-150BR
	2020K-502B	•	•	(25)	(∞)	5.1 (5.1)	20	20	30	21	125	25	SF ^R /L-502B	111111112	CI 5 01	211 3	GVF ^L / _R 400 ~ 490B
	2525M-502B	•	•			3.1 (3.1)	25	25	32	26	150	32	31 71 3020				GVF ^L / _R 400-200BR
	2020K-701B	•	•			5.1 (4.6)	20	20	30	21	125	25	SF% -701B				GVF ^L / _R 250 ~ 350B
	2525M-701B	•	•	70	100	3.1 (4.0)	25	25	32	26	150	32	31 72 7010				GVF ^L / _R 300-150BR
	2020K-702B	•	•	(25)	(∞)	5.1 (5.1)	20	20	30	21	125		SF%L702B				GVF ^L / _R 400 ~ 490B
	2525M-702B	•	•				25	25	32	26	150	32					GVF ^L / _R 400-200BR
GFVS ^R /L	2525M-501C	•	•	50	70	8.1 (*5.1)							SF%-501C				GVF ^L / _R 350 ~ 450C
	2525M-502C	•	•	(25)	(∞)	8.1 (8.1)							SF%-502C				GVF ^L / _R 500 ~ 600C
	2525M-701C	•	•	70	100	8.1 (*5.1)							SF%-701C				GVF ^L / _R 350 ~ 450C
	2525M-702C	•	•	(25)	(∞)	8.1 (8.1)	25	25	32	26	150	32	SF [®] /∟-702C	HH4X12	CPS-8V	LW-4	GVF ^L / _R 500 ~ 600C
	2525M-1001C	•	•	100	150	8.1 (*5.1)				-		-	SF%-1001C			•	GVF ^L / _R 350 ~ 450C
	2525M-1002C	•	•	(25)	(∞)	8.1 (8.1)							SF%-1002C				GVF ^L / _R 500 ~ 600C
	2525M-1501C	•	•	150	250	8.1 (*5.1)							SF%-1501C				GVF ^L / _R 350 ~ 450C
	2525M-1502C	•	•	(25)	(∞)	8.1 (8.1)							SF%-1502C				GVF ^L / _R 500 ~ 600C

CDX exibe a profundidade de canal disponível.

0 valor () do diâm. externo do canal (DAXX) é o valor do diâmetro externo máximo após o canal inicial entre DAXN ~ DAXX. (é possível ampliar o canal para o infinito ∞).


O valor () do diâm. interno do canal (DAXN) é o diâmetro mínimo da saliência remanescente no centro ao ampliar a largura do canal para um valor inferior após o canal inicial entre DAXN ~ DAXX. Os porta-ferramentas padrão são projetados com a posição da aresta 1,0mm acima do centro. Ao usar porta-ferramentas não padronizados, defina a posição da aresta 1,0mm acima do centro.

CDX indica a distância entre o porta-ferramentas e a aresta de corte. A profundidade de canal é aquela mencionada em().

0 GFVS é composto por um porta-ferramenta e uma lâmina. Se a lâmina estiver danificada, substitua-a por uma nova conforme listado na tabela em **G131**. (ex.) GFVSR2020K-HB + SFR-351B = GFVSR2020K-351B

*GVFL/R400~450-040C: CDX is 6.6

GFVT (Canal de face)

Inserto esquerdo para porta-ferramenta direito, inserto direito para porta-ferramenta esquerdo Este porta-ferramenta pode usinar vários diâmetros de canal de face com a substituição da lâmina.

Interno

Externo

Face

Dimensões do porta-ferramenta

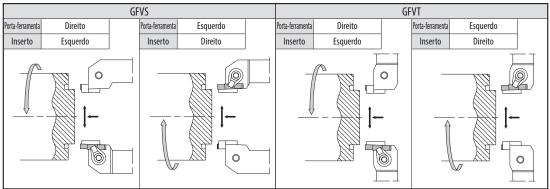
														Peças de	reposição		
	Descrição			Diâm. do cana			Dir	mens	ão (m	m)			Lâmina	Parafuso	Conjunto do grampo	Chave	Insertos aplicáveis G126
		R	L	DAXN (min.)	DAXX (max.)	CDX	Н	В	LH	HF	LF	WF					
GFVT% 2	2020K-351B	•	•			F 1 (4 C)	20	20	22	21	125	30					GVF ^L / _R 250 ~ 350B
2	2525M-351B	•	•	35	50	5.1 (4.6)	25	25	25	26	150	35	SF%351B				GVF ^L / _R 300-150BR
2	2020K-352B	•	•	(25)	(∞)	Γ1 (Γ1)	20	20	22	21	125	30	SF%352B				GVF ^L / _R 400 ~ 490B
2	2525M-352B	•	•			5.1 (5.1)	25	25	25	26	150	35	3F'7∟-352B				GVF ^L / _R 400-200BR
2	2020K-501B	•	•			5.1 (4.6)	20	20	22	21	125	30	SF [®] /∟-501B				GVF ^L / _R 250 ~ 350B
2	2525M-501B	•	•	50	70	3.1 (4 .0)	25	25	25	26	150	35	3F.7L-301D	HH4X12	CPS-6V	LW-3	GVF ^L / _R 300-150BR
2	2020K-502B	•	•	(25)	(∞)	5.1 (5.1)	20	20	22	21	125	30	SF ^R / _L -502B	пп4л12	CL 2-0 A	LVV-3	GVF ^L / _R 400 ~ 490B
2	2525M-502B	•	•			3.1 (3.1)	25	25	25	26	150	35	3F /L-302D				GVF ^L / _R 400-200BR
2	2020K-701B	•	•			5.1 (4.6)	20	20	22	21	125	30	SF ^R / _L -701B				GVF ^L / _R 250 ~ 350B
2	2525M-701B	•	•	70	100	3.1 (4.0)	25	25	25	26	150	35	31 /L-/01D				GVF ^L / _R 300-150BR
2	2020K-702B	•	•	(25)	(∞)	5.1 (5.1)	20	20	22	21	125	30	SF ^R /L-702B				GVF ^L / _R 400 ~ 490B
2	2525M-702B	•	•			3.1 (3.1)	25	25	25	26	150	35	JI /L-/ 020				GVF ^L / _R 400-200BR
GFVT ^R /L 2	2525M-501C	•	•	50	70	8.1 (*5.1)							SF%-501C				GVF ^L / _R 350 ~ 450C
2	2525M-502C	•	•	(25)	(∞)	8.1 (8.1)							SF%L-502C				GVF ^L / _R 500 ~ 600C
2	2525M-701C	•	•	70		8.1 (*5.1)							SF [®] /∟-701C				GVF ^L / _R 350 ~ 450C
2	2525M-702C	•	•	(25)	(∞)	8.1 (8.1)	25	25	27	26	150	38	SF%L-702C	HH4X12	CPS-8V	LW-4	GVF ^L / _R 500 ~ 600C
	2525M-1001C	•	•	100		8.1 (*5.1)	23	23	- '	20	150	50	SF%-1001C	11117/12	(150)	LW	GVF ^L / _R 350 ~ 450C
	2525M-1002C	•	•	(25)	(∞)	8.1 (8.1)							SF [®] /∟-1002C				GVF ^L / _R 500 ~ 600C
2	2525M-1501C	•	•	150		8.1 (*5.1)							SF [®] /∟-1501C				GVF ^L / _R 350 ~ 450C
	2525M-1502C	•	•	(25)	(∞)	8.1 (8.1)							SF%-1502C				GVF ^L / _R 500 ~ 600C

CDX exibe a profundidade de canal disponível.

0 valor () do diâm. externo do canal (DAXX) é o valor do diâmetro externo máximo após o canal inicial entre DAXN ~ DAXX. (é possível ampliar o canal para o infinito ∞).

O valor () do diâm. Interno do canal (DAXN) é o diâmetro mínimo da saliência remanescente no centro ao ampliar a largura do canal para um valor inferior após o canal inicial entre DAXN ~ DAXX.

Os porta-ferramentas padrão são projetados com a posição da aresta 1,0mm acima do centro. Ao usar porta-ferramentas não padronizados, defina a posição da aresta 1,0mm acima do centro.


CDX indica a distância entre o porta-ferramentas e a aresta de corte. A profundidade de canal é aquela mencionada em().

O GFVS é composto por um porta-ferramenta e uma lâmina. Se a lâmina estiver danificada, substitua-a por uma nova conforme listado na tabela em G131.

(ex.) GFVTR2020K-HB + SFR-351B = GFVTR2020K-351B

*GVF^L/_R400~450-040C: CDX é 6.6

Seleção do porta-ferramentas e do inserto

Combinação do porta-ferramenta e lâmina

Des	crição do porta-ferramenta	Dispon	ibilidade	Docericã	o da lâmina	Descrição do port	a-ferramenta	Evernle de instalação (CEVS)	Como identificar com o porta-
	(estampado abaixo)	R	L	Descriça	o da lâmina	(descrição da	unidade)	Exemplo de instalação (GFVS)	ferramentas e a lâmina de canal de face
	//S ^R /L2020K-HB /T ^R /L2020K-HB	•	•	SF ^R /L	-351B -352B -501B -502B -701B -702B	GFV5 ^F / _L 2020K GFVT ^R / _L 2020K	-351B -352B -501B -502B -701B -702B	Marcação da descrição do porta-ferramenta Conjunto do grampo	Q : Embora "GFVSR2525M-HC" esteja marcado no porta-ferramentas para canal de face, o tamanho do diâmetro de corte é desconhecido. Como posso identifica-lo?
	/S ^R /∟2525M-HB /T ^R /∟2525M-HB	•	•	SF ^R /L	-351B -352B -501B -502B -701B -702B	GFVS ^P /L2525M GFVT ^P /L2525M	-351B -352B -501B -502B -701B -702B	Porta-ferramenta Lâmina Parafuso	A : Retire a làmina. A descrição da lâmina está na parte de trás. Verifique a descrição do porta-ferramentas no catálogo. Se "SFR-1001C" estiver integrado a "GFVSR2525M-HC",
	//S ^R /L2525M-HC /T ^R /L2525M-HC	•	•	SF ^R / _L	-501C -502C -701C -702C -1001C -1002C -1501C -1502C	GFV5 [®] /L2525M GFVT [®] /L2525M	-501C -502C -701C -702C -1001C -1002C -1501C -1502C	Lâmina (parte traseira) (com descrição da lâmina)	a descrição do porta-ferramentas é "GVFSR2525M-1001C".

[·] Lâmina direita para suporte direito, lâmina esquerda para suporte esquerdo.

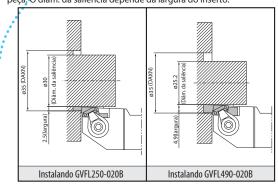
 $[\]cdot$ A instalação do GFVT também segue o exemplo de instalação do GFVS

Dimensões da lâmina

Formato	Descrição		oni- dade	Dir	nensã	o (mm)	Diâm. ex canal		Insertos aplicáveis	Porta-ferramentas aplicáveis
		R	L	L	Н	T	W	(min.)	(max.)		
	SF ^R / _L -351B	•	•		11		2.0	35	50	GVF½250~350-020B GVF½300-150BR	
	-352B	•	•		''		3.4	33	30	GVF¼400~490-020B GVF¼400-200BR	
	SF ^R / _L -501B	•	•				2.0			GVF½250~350-020B GVF½300-150BR	GFV(S/T) ^P /LOOOO
	-502B	•	•	30.5	15	4.7	3.4	50	70	GVF½400~490-020B GVF½400-200BR	Gravação do porta-ferramenta
H	SF ^R / _L -701B	•	•		17		2.0	70	100	GVF½250~350-020B GVF½300-150BR	divisiti) ile
30)	-702B	•	•		17		3.4	/0	100	GVF¼400~490-020B GVF¼400-200BR	
1 2	SF ^R / _L -501C	•	_		15		2.8	50	70	GVF¼350~450-040C	
11 J - w	-502C	•	•		13		4.3	30	,,,	GVF\\\500~600-040C	GFV(S/T) ^P /LOOOO
Lado gravado Formato da ponta	SF ^R / _L -701C -702C	•	•		20		2.8 4.3	70	100	GVF½350~450-040C GVF½500~600-040C	-0000
501C, 701C, 1001C. 1501C	SF ^R / _L -1001C	•	•	35		7.5	2.8			GVF1/350~450-040C	Gravação do porta-ferramenta
● Mostrado versão à direita	-1002C	•	•		23		4.3	100	150	GVF ¹ / ₈ 500~600-040C	GFV(S/T) ^R /LOOO HC
· Lâmina direita para suporte direito,	SF ^R / _L -1501C	•	•		23		2.8	150	250	GVF1/x350~450-040C	
lâmina esquerda para suporte esquerdo.	-1502C	•	•		23		4.3	130	230	GVF1/4500~600-040C	

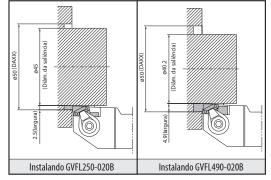
Diâm. externo do canal de GFVS / GFVT

ex.) GFVS^R/L...-351B/352B

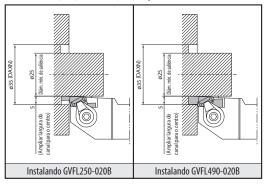

(igual a GFVS¹/₄...-○○B, ...-○○C (G129) GFVT¹/₄...-○○B, ...-○○C (G130)

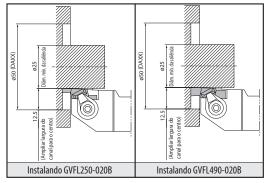
Docericão	Diâm exte canal (ı		Incortos anlicávois
Descrição	DAXN (min.)	DAXX (max.)	Insertos aplicáveis
GFVS [®] /√ 2020K-351B 2525M-351B 2020K-352B 2525M-352B	35 (25)	50 (∞)	GVF ^L / _R 250 ~ 350B GVF ^L / _R 300-150BR GVF ^L / _R 400 ~ 490B GVF ^L / _R 400-200BR

 • É possível alargar o canal até o infinito ∞ no caso de usinagem do canal inicial dentro da faixa DAXN ~ DAXX e então ampliando para o diâmetro externo


Ao usinar o canal inicial na face em DAXN ø35

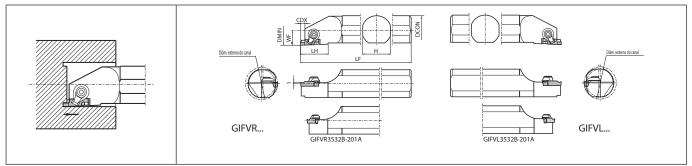
Caso o canal inicial seja menor do que isso, o porta-ferramentas interfere na peça. O diâm. da saliência depende da largura do inserto.


••• Na usinagem do canal inicial na face em DAXX ø50


Caso o canal inicial seja feito maior que isso, o porta-ferramentas interfere na peça. O diâmetro da saliência depende da largura do inserto.

• Ao ampliar a largura do canal para o diâmetro interno

O diâm. da saliência ø25 é a limitação independentemente da largura do inserto, até mesmo ampliando a largura do canal para o centro a partir do canal inicial em DAXN (ø35) or DAXX (ø50). O porta-ferramentas interfere na peça quando está mais próximo do centro.



●: Item standard R: Apenas sentido direito L: Apenas sentido esquerdo □: Verifique disponibilidade

GIFV (Canal de face)

Inserto direito para porta-ferramenta direito, inserto esquerdo para porta-ferramenta esquerdo.

Dimensões do porta-ferramenta

														Peças de	reposição		
	Descrição		ooni- dade		externo al (mm)			Dime	nsão	(mm))		Conjunto do grampo	Conjunto do grampo	Chave	Chave	Insertos aplicáveis G126
		R	L	DAXN (min.)	DAXX (max.)	DMIN	DCON	CDX	Н	LH	LF	WF					Ü
GIFV ^P /L	3532B-201A	•	•	35 (12)	∞ (∞)	35	32	2.2	30	23	250	16	CPS-5V	-	-	FT-15	GVF ^r /LA(R)
GIFV ^R /L	3532B-351B	•	•	35	50	35		4.6									GVF ^R /∟250 ~ 350B(R)
	3532B-352B	•	•	(25)	(∞)	35	22	5.1	30	30	250	10		CDC CV	1111 2		GVF ^R /∟400 ~ 490B(R)
	5032B-501B	•	•	50	70		32	4.6	30	30	250	16	-	CPS-6V	LW-3	-	GVF ^R /∟250 ~ 350B(R)
	5032B-502B	•		(25)	(∞)	50		5.1									GVF ^R /∟400 ~ 490B(R)
GIFV ^R /L	5032B-501C	•	•	50	70	50 32	32	6.6	30	25	250	16		CDC OV	LW-4		GVF ^R /L350 ~ 450-040C
	5032B-502C	•	•	(25)	(∞)) 	52	8.1	30	(د ا	230	10	-	CPS-8V	LVV-4	-	GVF% 500 ~ 600-040C

CDX exibe a profundidade de canal disponível.

Os porta-ferramentas são projetados com a posição da aresta 1,0mm acima do centro.

O diâm. externo do canal depende da aplicação

O diam. externo do canar depende		Diâm interne de	l Bia			
		Diâm. interno do canal	Diām.	externo d	o canal	
Aplicações	Descrição	(min.)	DAXN [min.]	DAXX [max.]	(max.)	Observações
7//////////////////////////////////////	GIFV ^R / _L 3532B-201A			∞		
<u> </u>	GIFV ^R / _L 3532B-351B		35	50		
limi se	3532B-352B			30		
sro do canal	5032B-501B	-			∞	-
Dâm. interno do canal (MIN). Dâm. externo do canal	5032B-502B		50	70		
Digim. →	GIFV ^R / _L 5032B-501C		30	/0		
	5032B-502C					
	GIFV ^R / _L 3532B-201A	12		∞		Se ø D1 \geq 58-2CW, o diâmetro do canal de face pode ser expandido
()	GIFV ^R / _L 3532B-351B		35	50		para o diâm. interno do canal (MIN.) em direção ao centro.
canal ((A	3532B-352B			50		CW = Largura da aresta
Dian. Interno do canal ((IAM))	5032B-501B	25			∞	
in the second se	5032B-502B	25	50	70		Se ø D1 \geq 75-2CW, o diâmetro do canal de face pode ser expandido
i.m.	GIFV ^R / _L 5032B-501C		50	,,,		para diâm. interno do canal (MIN.) em direção ao centro.
- '////////////////////////////////////	5032B-502C					CW = Largura da aresta
	GIFV ^R /∟ 3532B-201A	12		∞		
WWW.	GIFV ^R / _L 3532B-351B		35	50		
Canali	3532B-352B			30]	
Diam externo do canal do canal do canal	5032B-501B	25			∞	-
Dâm interno do canal ((MM))	5032B-502B	25	50	70		
Digur.	GIFV ^R / _L 5032B-501C		50	,,,		
<u> </u>	5032B-502C					

O valor () do diâm. externo do canal (DAXX) é o valor do diâmetro externo máximo após o canal inicial entre DAXN ~ DAXX. (é possível ampliar o canal para o infinito ∞).

O valor () do diâm. interno do canal (DAXN) é o diâmetro mínimo da saliência remanescente no centro ao ampliar a largura do canal para um valor inferior após o canal inicial entre DAXN ~ DAXX.

FMM/FMN

	-			Aço	carbono	/ Aço liga	1							•		P
				Aço	inoxidáv	rel .								•	\perp	М
				Fer	ro fundid	0								C		K
				Me	tais não f	errosos								•		N
				Lig	as de titâ	nio								•		S
				Ma	teriais du	ros (~ 40	HRC)					Ш		0	L	- н
				Ma	teriais du	ros (40HF	RC ~)								L	
						Dimensa	ăo (mm)			ância m)		Meta	al di	uro	Cermet	
lo.	serto		Descrição	Nº de arestas							CVD	Р	PVD	-	-	Porta-ferramenta aplicável
111	Serto		Descrição	Nº de	CW	S	RE	INSL	CW min.	CW max.	CR9025	PR905	PR915	PR930	OL WAY	C125 C126
		FMM	30-03	1	3	3.5	0.3	12	- 0.05	+ 0.05	•	•	•	•	•	KFMS ^R /L3
	INSL & S	FMM	40-04	1	4	3.5	0.4	12	- 0.05	+ 0.05	•	•	•	•	•	KFMS ^P /L4
	Orientado a controle do	FMM	50-04	1	5	3.5	0.4	12	- 0.05	+ 0.05	•	•	•	•	•	KFMS [®] √5
	cavaco / Classe M	FMM	60-04	1	6	3.5	0.4	12	- 0.05	+ 0.05	•	•		•	•	
		FMN	3	1	3	3.5	0.25	12	- 0.05	+ 0.05	•			•	•	KFMS ^R /L3
	S OOF	FMN	4	1	4	3.5	0.25	12	- 0.05	+ 0.05	•			•	•	KFMS ^R /L4
	Orientado a corte afiado	FMN	5	1	5	3.5	0.25	12	- 0.05	+ 0.05	•			•	•	− KFMS [®] /5
	/ Classe M	FMN	6	1	6	3.5	0.25	12	- 0.05	+ 0.05	•			•	•	REWIJ-7LD

Os insertos FMN são apenas para canal profundo e não são aplicáveis ao torneamento

Condições de corte recomendadas

		Classe	recomendada	(Vc: m/min)			Cana	al de face (FMM /	FMN)	To	orneamento (FM/	N)	100
Material	Cermet	Metal duro CVD	1	Metal duro PV	'D	Metal duro	Lar	rgura da aresta (m	nm)	Lar	rgura da aresta (m	nm)	Observações
Material	06NI	025	315	PR915		KW10	3.0	4.0	5.0 / 6.0	3.0	4.0	5.0 / 6.0	bser
	Ž	CR9025	PRS	PR9	PR9	K		f (mm/rev)			f (mm/rev)		
Aço carbono	☆ 100~220	☆ 80~200	☆ 80~200	★ 80~200	-	-	0.03~0.05	0.03~0.08	0.05~0.10	0.05~0.10	0.05~0.25	0.10~0.30	
Aço liga	☆ 80~200	☆ 70~180	☆ 70~180	★ 70~180	-	-	0.03~0.05	0.03~0.08	0.05~0.10	0.05~0.10	0.05~0.25	0.10~0.30	
Aço inoxidável	☆ 70~160	☆ 60~150	★ 60~150	☆ 60~150	-	-	0.03~0.05	0.03~0.08	0.05~0.10	0.05~0.10	0.05~0.25	0.10~0.30	refrig.
Ferro fundido	-	-	-	-	★ 80~180	☆ 70~150	0.03~0.05	0.03~0.08	0.05~0.10	0.05~0.10	0.05~0.25	0.10~0.30	Com
Ligas de alumínio	-	-	-	-	-	★ 200~500	0.03~0.05	0.03~0.08	0.05~0.10	0.05~0.10	0.05~0.25	0.10~0.30	
Latão	-	-	-	-	-	★ 100~200	0.03~0.05	0.03~0.08	0.05~0.10	0.05~0.10	0.05~0.25	0.10~0.30	

★:1ª recomendação ☆:2ª recomendação

Consulte as observações abaixo para as condições de torneamento.

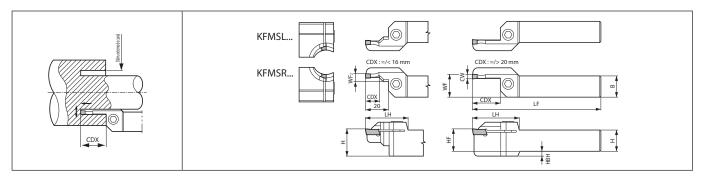
ap e f de FMM

Externo Interno

Face

	Condições de corte recomendadas	
ap (MAX.) (mm)	menos de 50% da largura da aresta	ap ≤ 0.5CW
f (MAX.) (mm/rev)	menos de 3~5% da largura da aresta	f ≤ [0.03(Min.) ~ 0.05(Max.)]CW

ap x f devem ser conforme a seguir


Carga (mm²) Larg. da aresta (mm)	3.0	4.0	5.0	6.0
ap x f	~0.09	~0.14	~0.25	~0.36

 $ap x f \le 0.01 CW^2$

: Item standard

Defina a taxa de avanço de 1/100 da largura da aresta no primeiro canal e verifique o escoamento do cavaco.
 Os insertos do tipo FMN são apenas para canais profundos e, quando usados para torneamento, ajuste o ap = 0,2 mm ou menor.

KFMS (Canal de face)

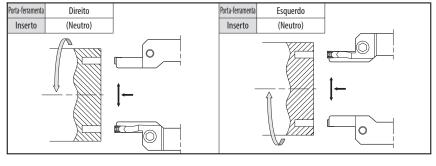
Dimensões do porta-ferramenta

																Peças de	reposição	
	Descrição		oni- dade		externo al (mm)				Di	imens	são (r	nm)				Parafuso de fixação	Chave	Insertos aplicáveis G134
		R	L	DAXN (min.)	DAXX (max.)	XOX	Н	В	LH	HF	HBH	LF	WF	WF2	CW			
KFMS ^R /L	2020K2530-3	•		25	30													
	2020K3040-3	•		30	40	13			39					6.1				
	2020K4050-3	•		40	50						-							
	2020K5065-3	•		50	65	22	20	20	41	20		125	20.7			HH5X20		
	2020K6585-3	•		65	85	22			41									
	2020K85110-3	•		85	110	25			44		5			-				
	2020K110145-3	•		110	145	25			44		٥				3		LW-4	FMM30-03
	2525M2530-3	•	•	25	30										٥		LVV-4	FMN3
	2525M3040-3	•	•	30	40	13			39					6.1				
	2525M4050-3	•	•	40	50													
	2525M5065-3	•	•	50	65	22	25	25	41	25	-	150	25.7			HH5X25		
	2525M6585-3	•	•	65	85	22			41					_				
	2525M85110-3	•	•	85	110	25			44					-				
	2525M110145-3	•	•	110	145	23			44									
KFMS ^R /L	2020K2535-4	•		25	35	12			39					7.1				
	2020K3550-4	•		35	50	20			39		-							
	2020K5070-4	•		50	70													
	2020K70100-4	•		70	100		20	20		20		125	20.7	_		HH5X20		
	2020K100150-4	•		100	150	25			44		5			-				
	2020K150220-4	•		150	220						,							
	2020K220800-4	•		220	∞										4		LW-4	FMM40-04
	2525M2535-4	•	•	25	35	12			39					7.1	*		LVV-4	FMN4
	2525M3550-4	•	•	35	50	20			ر ا									
	2525M5070-4	•	•	50	70													
	2525M70100-4	•	•	70	100		25	25		25	-	150	25.7	_	HH5X25	HH5X25		
	2525M100150-4	•	•	100	150	25			44					-				
	2525M150220-4	•	•	150	220													
	2525M220800-4	•	•	220	∞													

CDX exibe a profundidade de canal disponível. Diâm. externo do canal : A faixa do diâmetro do canal inicial. KFMS será substituído por KGDF=> $G114 \sim G118$

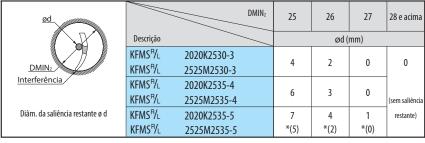
Dimensões do porta-ferramenta

																Peças de	reposição	
	Descrição	Disp bilid		Diâm. 6 do cana	externo al (mm)				Di	imens	são (n	nm)				Parafuso de fixação	Chave	Insertos aplicáveis G134
		R		DAXN (min.)	DAXX (max.)	XOX	Н	В	LH	HF	НВН	LF	WF	WF2	CW			
KFMS ^R /L	2020K2535-5	•		25	35	20			39									
	2020K3550-5	•		35	50	20			39		-							
	2020K5075-5	•		50	75								20.7					
	2020K75115-5	•		75	115		20	20		20		125	20.7 (21.2)			HH5X20		
	2020K115180-5	•		115	180	25			44		,		(21.2)					
	2020K180235-5	•		180	235						5							FMM50-04
	2020K235800-5	•		235	∞										5		LW-4	FMN5
	2525M2535-5	•	•	25	35	20			39					-	(6)		LVV-4	FMM60-04
	2525M3550-5	•	•	35	50	20			39									FMN6
	2525M5075-5	•	•	50	75	25			44				25.7					
	2525M75115-5	•	•	75	115		25	25		25	-	150	25.7 (26.2)			HH5X25		
	2525M115180-5	•	•	115	180	32			51				(20.2)					
	2525M180235-5	•	•	180	235	32			וכן									
	2525M235800-5	•	•	235	∞													


CDX exibe a profundidade de canal disponível.

Diâm. externo do canal : A faixa do diâmetro do canal inicial.

Para KFMS[®]/L...-5 o porta-ferramentas é compatível com um inserto com 6 mm de largura. O valor () mostra a dimensão de um inserto com 6 mm de largura.


KFMS será substituído por KGDF=> $G114 \sim G118$

Seleção do porta-ferramenta e do inserto

Limite de torneamento em direção ao centro

Tornear em direção ao centro faz com que o porta-ferramentas interfira com a parede do canal dependendo do diâmetro do corte inicial.

O KFMSR 2525M2530-3 com ø 25 como primeiro corte em direção ao centro causará atrito com a lâmina do porta-ferramenta se ø d for 4,0 mm.

*O valor () mostra a dimensão usando o inserto FMM60-04

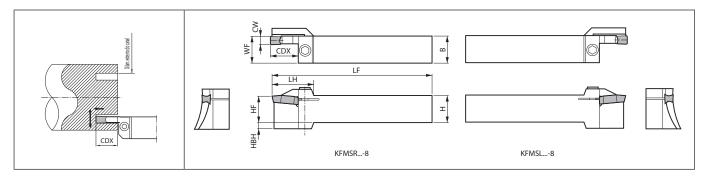
U

Externo

Interno Face

G

anal


GMM/GMG/GMGA

		Aço	carbono	/ Aço liga	<u> </u>						(b)			P
		Aço	inoxidáv	rel .							• C			М
		Fer	ro fundid	0						•		9		K
		Me	tais não f	errosos								•		N
		Lig	as de titâ	nio								•		S
		Ma	teriais du	ros (~ 40	HRC)						0			н
		Ma	teriais du	ros (40HF	RC ~)									
				Dimens	ão (mm)			ância m)	١	Иet	al dur	0	Cermet	
Inserto	Descrição	Nº de arestas							CVD	F	PVD	-	-	Porta-ferramenta aplicável
inserto	Descrição	N° de	CW	S	RE	INSL	CW min.	cW max.	CR9025	PR905	PR915 PR930	KW10	1N90	△ C120
Orientado a corte añado / Classe de precisão ((quebra-cavaco retificado)	GMG 8030-050MG	2	8	5.5	0.5	30	- 0.03	+ 0.03	0	0	C		0	
Raio completo / Orienta-do a corte afiado / Classe de precisão	GMGA 8030-400R	2	8	5.5	4	30	- 0.02	+ 0.02				0		KFMS®/8
Orientado a controle do cavaco / Classe M	GMM 8030-080MW	2	8	5.5	0.8	30	- 0.05	+ 0.05	0	0	0 0	0		

No caso de uso de um inserto de raio completo com porta-ferramentas KFMS-8, você precisa modificar o canto da lâmina do porta-ferramentas.

Condições de corte recomendadas
G143

KFMS-8 (Canal de face)

Dimensões do porta-ferramenta

Externo Interno Face

<i>-</i> c	insoes do porte			٠٠													
															Peças de	reposição	
	Descrição	Disponi- bilidade			externo al (mm)				Dime	nsão	(mm)				Parafuso de fixação	Chave	Insertos aplicáveis
		R	L	DAXN (min.)	DAXX (max.)	XOX	Н	В	LH	HF	НВН	LF	WF	CW			
KFMS ^R /L	2525M5464-8	•	•	54 (0)	64 (∞)				41		-						
	2525M6382-8	•	•	63 (0)	82 (∞)				41		2.4						
	2525M80115-8	•	•	80 (0)	115 (∞)	25	25	25	40	25		150	26	8	HH6X25	LW-5	GMG8030-050MG
	2525M105160-8	•	•	105 (0)	160 (∞)	23			40		6			0	ППОХ2Э	LW-5	GMGA8030-400R GMM8030-080MW
	2525M155510-8	•	•	155	510				43								
	3232P155510-8	•		(0)	(∞)		32	32	43	32	-	170	33				

CDX exibe a profundidade de canal disponível.

O valor () do diâm. externo do canal (DAXX) é o valor do diâmetro externo máximo após o canal inicial entre DAXN ~ DAXX. (é possível ampliar o canal para o infinito ∞).

O valor () do diâm. interno do canal (DAXN) é o diâmetro mínimo da saliência remanescente no centro ao ampliar a largura do canal para um valor inferior após o canal inicial entre DAXN ~ DAXX.

FTK

Metais não ferrosos • N Ligas de titânio S Materiais duros (~ 40HRC) Н Materiais duros (40HRC ∼) Dimensão Tolerância Metal (mm) (mm) duro N⁰ de arestas S S Porta-ferramenta aplicável Inserto Descrição CW CW CW ● G140 RE CR9025 PR930 KW10 min. max.

FTK

FTK

5

Aço carbono / Aço liga

Aço inoxidável

Ferro fundido

4 0.25

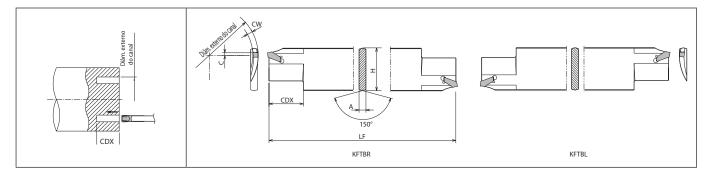
0.25

1 5

Condições de corte recomendadas
G146

- 0.05 | + 0.05 | • | • |

- 0.05 | + 0.05 | • | • |


•

М

KFTB[®]/∟...-4S

KFTB^R/∟...-5S

KFTB (Lâmina de canal de face)

Dimensões do porta-ferramenta

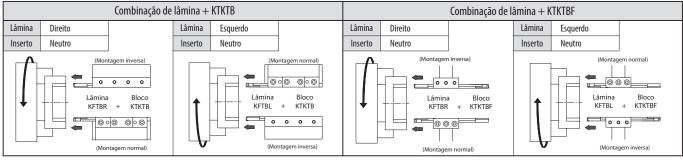
Externo

Interno

Face

		Disponi- bilidade		Diâm. externo do canal (mm)			Dir	mens	ăo (m	m)			Bloco porta-ferramenta	
	Descrição		L	DAXN (min.)	DAXX (max.)	XO	Н	A	С	LF	CW	Insertos aplicáveis G139	aplicável ⊕ H50, H51	
KFTB ^R /L	65100-4S	•	•	65	100	25			4					
	90150-45	•	•	90	150	30	,,	5.2		150	١, ١	ETV.		
	150250-4S	•	•	140	250	20	32		0	150	4	FTK4	KPKTB32JCT	
	250800-4S	•	•	230	∞	30		3.2					KTKTB32	
KFTB ^R /L	90150-5\$	•	•	90	150	30		E 2					KTKTBF32	
	150250-5S	•	•	150	250	32	32	5.2	0	150	5	FTK5		
	250800-5S	•	•	250	∞	38		4						

CDX exibe a profundidade de canal disponível.


Diâm. externo do canal : A faixa do diâmetro inicial do canal.

O inserto tem um sistema de autofixação e não é adequado para canais de tolerância apertada (tolerância±0.05mm).

Golpeie levemente o inserto com um martelo de plástico. (A extremidade do inserto não toca o porta-ferramentas.)

O porta-ferramentas KFTB^P/_L65100-4S é projetado com a posição da aresta 4mm acima do centro.

Seleção de lâmina e inserto

^{*} A dimensão H mostra a distância entre os vértices virtuais.

Insertos GBA - Quebra-cavacos retificado

				Cla	sses de insert	os recomenda	adas (Vc: m/n	nin)					(1) f para canal (mr	m/rev)		
Material	MEGACOAT cermet		Cermet		MEGACOAT	MEGACOAT NANO	Metal d	uro PVD	Metal duro	CBN	PCD			2) f para torneame 3) ap para torneam			Observações
material	PV7040	TN620	TC40	06NT	PR1215	PR1625	PR930	PR905	KW10	KBN510 KBN525	KPD001 (KPD010)	GBA OF/L GBA OF 125~22		GBA○○ ^R /L 230~325	GBA○○ ^R /L 330~350	GBA○○º\/L 400~480	Obser 0
Aço carbono	150~240	80 ~ 220	150~220	150∼220	80~200	80 ~ 180	80 ² 180	-	-	-	-	(1) 0.03~0.08 (2) Não recom. (3) Não recom.	(1) 0.04~0.09 (2) 0.04~0.09 (3) Max. 0.3	(1) 0.05~0.1 (2) 0.05~0.1 (3) Max. 0.5	(1) 0.05~0.12 (2) 0.05~0.1 (3) Max. 0.5	(1) 0.05~0.12 (2) 0.05~0.1 (3) Max. 0.8	
Aço liga	130~220	80~200	130~200	130~200	80~180	80~160	80~160	-	-	-	-	(1) 0.03~0.07 (2) Não recom. (3) Não recom.	(1) 0.04~0.08 (2) 0.04~0.08 (3) Max. 0.3	(1) 0.05~0.09 (2) 0.05~0.09 (3) Max. 0.5	(1) 0.05~0.1 (2) 0.05~0.1 (3) Max. 0.5	(1) 0.05~0.1 (2) 0.05~0.1 (3) Max. 0.8	
Aço inoxidável	-	-	1	70≈150	60₹150	60~130	60 ² √130	-	-	-	-	(1) 0.03~0.07 (2) Não recom. (3) Não recom.	(1) 0.04~0.08 (2) 0.04~0.08 (3) Max. 0.3	(1) 0.05~0.09 (2) 0.05~0.09 (3) Max. 0.5	(1) 0.05~0.1 (2) 0.05~0.1 (3) Max. 0.5	(1) 0.05~0.1 (2) 0.05~0.1 (3) Max. 0.8	ção
Ferro fundido	-	-	-	-	-	-	-	80~180	60~120	150~400	-	(1) 0.03~0.08 (2) Não recom. (3) Não recom.	(1) 0.04~0.09 (2) 0.04~0.09 (3) Max. 0.3	(1) 0.05~0.1 (2) 0.05~0.1 (3) Max. 0.5	(1) 0.05~0.12 (2) 0.05~0.1 (3) Max. 0.5	(1) 0.05~0.12 (2) 0.05~0.1 (3) Max. 0.8	Com refrigeração
Ligas de alumínio	-	-	-	-	-	-	-	-	150~400	-	150~2,000	(1) 0.05~0.12 (2) Não recom. (3) Não recom.	(1) 0.05~0.15 (2) 0.05~0.15 (3) Max. 0.5	(1) 0.05~0.15 (2) 0.05~0.15 (3) Max. 0.8	(1) 0.08~0.15 (2) 0.08~0.15 (3) Max. 0.8	(1) 0.08~0.15 (2) 0.08~0.15 (3) Max. 0.8	ē
Latão	-	-	-	-	-	-	-	-	150~300	-	200~800	(1) 0.05~0.12 (2) Não recom. (3) Não recom.	(1) 0.05~0.15 (2) 0.05~0.15 (3) Max. 0.5	(1) 0.05~0.15 (2) 0.05~0.15 (3) Max. 0.8	(1) 0.08~0.15 (2) 0.08~0.15 (3) Max. 0.8	(1) 0.08~0.15 (2) 0.08~0.15 (3) Max. 0.8	
Materias duros	-	-	-	-	-	-	-	-	-	80~120	-	-	(1) 0.02~0.05 (2) Não recom. (3) Não recom.	(1) 0.03~0.07 (2) 0.01~0.04 (3) Max. 0.1	-	-	

^{*} A condição de corte acima é para canal externo. Defina a velocidade de corte e o avanço 10% inferior ao canal interno.

★:1ª recomendação ☆:2ª recomendação

Insertos GBA - Quebra-cavaco GM

III3CI to3 GDA	Quebla	cavaco Giv	/1								
Material	Classes de i	nsertos recomendadas	(Vc: m/min)	(1) f para canal (mm/rev) (2) f para torneamento (mm/rev) (3) ap para torneamento (mm)							
Material	Cermet			GBA43 ^R /L	GBA43 ^R /L	GBA43 ^R /L	GBA43 ^R /L	GBA43 ^R /L	0bserv		
	TN620	PR1625	PR1215	140-010GM	150-020GM	175-020GM~230-020GM	250-030GM~ 350-030GM	400-040GM			
Aço carbono	★ 80~240	★ 80~220	☆ 80~220	(1) 0.03~0.1 (2) 0.03~0.08 (3) Max. 0.2	(1) 0.03~0.12 (2) 0.03~0.08 (3) Max. 0.3	(1) 0.03~0.12 (2) 0.03~0.09 (3) Max. 0.3	(1) 0.04~0.15 (2) 0.05~0.1 (3) Max. 0.5	(1) 0.05~0.15 (2) 0.05~0.1 (3) Max. 0.8	ação		
Aço liga	★ 80~220	★ 80~200	☆ 80~200	(1) 0.03~0.1 (2) 0.03~0.08 (3) Max. 0.2	(1) 0.03~0.12 (2) 0.03~0.08 (3) Max. 0.3	(1) 0.03~0.12 (2) 0.03~0.09 (3) Max. 0.3	(1) 0.04~0.15 (2) 0.05~0.1 (3) Max. 0.5	(1) 0.05~0.15 (2) 0.05~0.1 (3) Max. 0.8	refrigera		
Aço inoxidável	-	★ 60~150	☆ 60~150	(1) 0.03~0.1 (2) 0.03~0.08 (3) Max. 0.2	(1) 0.03~0.1 (2) 0.03~0.08 (3) Max. 0.3	(1) 0.03~0.1 (2) 0.03~0.09 (3) Max. 0.3	(1) 0.04~0.12 (2) 0.05~0.1 (3) Max. 0.5	(1) 0.04~0.12 (2) 0.05~0.1 (3) Max. 0.8	Com		

^{*} A condição de corte acima é para canal externo. Defina a velocidade de corte e o avanço 20% inferior ao canal interno.

★:1ª recomendação ☆:2ª recomendação

Insertos GBA - Quebra-cavaco MY

miscreos abre	Quebia cavaco ivi	•							
Material	Classes de insertos recomendadas (Vc: m/min)	(1) f para canal (mm/rev) (2) f para torneamento (mm/rev) (3) ap para torneamento (mm)							
Material	Cermet	GBA43 ^R /L	GBA43 ^R /L	GBA43 ^R /L	GBA43 ^R /L	GBA43 ^R /L	0bsen		
	TN6020	175-020MY~200-020MY	230-020MY~265-030MY	300-030MY	330-030MY~350-030MY	400-040MY			
Aço carbono	☆ 150~220	(1) 0.03~0.08 (2) 0.03~0.08 (3) Max. 0.3	(1) 0.04~0.09 (2) 0.04~0.09 (3) Max. 0.3	(1) 0.05~0.1 (2) 0.05~0.1 (3) Max. 0.5	(1) 0.05~0.12 (2) 0.05~0.1 (3) Max. 0.5	(1) 0.05~0.12 (2) 0.05~0.1 (3) Max. 0.8	ação		
Aço liga	☆ 130~200	(1) 0.03~0.07 (2) 0.03~0.1 (3) Max. 0.3	(1) 0.04~0.08 (2) 0.04~0.08 (3) Max. 0.3	(1) 0.05~0.09 (2) 0.05~0.09 (3) Max. 0.5	(1) 0.05~0.1 (2) 0.05~0.1 (3) Max. 0.5	(1) 0.05~0.1 (2) 0.05~0.1 (3) Max. 0.8	refriger		
Aço inoxidável	☆ 70~150	(1) 0.03~0.07 (2) 0.03~0.1 (3) Max. 0.3	(1) 0.04~0.08 (2) 0.04~0.08 (3) Max. 0.3	(1) 0.05~0.09 (2) 0.05~0.09 (3) Max. 0.5	(1) 0.05~0.1 (2) 0.05~0.1 (3) Max. 0.5	(1) 0.05~0.1 (2) 0.05~0.1 (3) Max. 0.8	Com		

^{*} A condição de corte acima é para canal externo. Defina a velocidade de corte e o avanço 10% inferior ao canal interno.

GBF

	Classes de i	nsertos recomendadas	(Vc: m/min)		(1) f para cana	l (mm/rev)		
	MEGACOAT	MEGACOAT NANO	Metal duro		(2) f para torn	eamento (mm/rev)		ções
Material	15	35	5		(3) ap para tor	neamento (mm)		Observações
	PR1215	PR1535	GW15	GBF32 ^F /∟ 025 – 053	GBF32 ^R / _L 065 – 095	GBF32 ^R /∟100 — 145	GBF3 ^F / _L 150 − 300	9 8
				(1) 0.01~0.05	(1) 0.02~0.07	(1) 0.03~0.08	(1) 0.03~0.08	
Aço carbono	★ 80~180	☆ 70~160	-	(2) Não recom.	(2) Não recom.	(2) 0.03~0.06	(2) 0.03~0.06	
	00 100			(3) Não recom.	(3) Não recom.	(3) Max. 0.2	(3) Max. 0.2	
				(1) 0.01~0.04	(1) 0.02~0.06	(1) 0.03~0.07	(1) 0.03~0.07	
Aço liga		☆ 70~160	-	(2) Não recom.	(2) Não recom.	(2) 0.02~0.05	(2) 0.02~0.05	
	00.4100	70.4100		(3) Não recom.	(3) Não recom.	(3) Max. 0.2	(3) Max. 0.2	
	,			(1) 0.01~0.04	(1) 0.02~0.06	(1) 0.03~0.07	(1) 0.03~0.07	
Aço inoxidável	☆ 60~130	★ 50~120	-	(2) Não recom.	(2) Não recom.	(2) 0.02~0.05	(2) 0.02~0.05	žã
	00*150	30**120		(3) Não recom.	(3) Não recom.	(3) Max. 0.2	(3) Max. 0.2	Com refrigeração
				(1) 0.01~0.05	(1) 0.02~0.07	(1) 0.03~0.08	(1) 0.03~0.08	ı refr
Ferro fundido	-	-	★ 60~100	(2) Não recom.	(2) Não recom.	(2) 0.03~0.06	(2) 0.03~0.06	. je
			00.4100	(3) Não recom.	(3) Não recom.	(3) Max. 0.2	(3) Max. 0.2	
				(1) 0.01~0.05	(1) 0.02~0.07	(1) 0.03~0.08	(1) 0.03~0.08	
Alumínio	-	-	★ 150~400	(2) Não recom.	(2) Não recom.	(2) 0.03~0.06	(2) 0.03~0.06	
			150.5400	(3) Não recom.	(3) Não recom.	(3) Max. 0.2	(3) Max. 0.2	
				(1) 0.01~0.04	(1) 0.02~0.06	(1) 0.03~0.07	(1) 0.03~0.07	
Latão	-	-	★ 150~300	(2) Não recom.	(2) Não recom.	(2) 0.02~0.05	(2) 0.02~0.05	
			150.~500	(3) Não recom.	(3) Não recom.	(3) Max. 0.2	(3) Max. 0.2	

★:1ª recomendação ☆:2ª recomendação

Insertos GBF-000F (RE=0.00)

	Classes de i	nsertos recomendadas (Vc: m/min)		(1) f para cana	I (mm/rev)			
	MEGACOAT	MEGACOAT NANO	Metal duro		(2) f para torno	eamento (mm/rev)		Observações	
Material	15	35	2		(3) ap para tor	neamento (mm)		serva	
	PR1215	PR1535	GW15	GBF32 ^R / _L 025 ~ 053 - 000F	GBF32 ^R /∟ 065 ~ 095 - 000F	GBF32 ^R /∟ 100 ~ 145 - 000F	GBF32 ^R /∟ 150 ~ 200 - 000F	qo	
				(1) 0.005~0.03	(1) 0.01~0.04	(1) 0.01~0.05	(1) 0.01~0.05		
Aço carbono	★ 80 ~180	☆ 70~160	-	(2) Não recom.	(2) Não recom.	(2) 0.01~0.04	(2) 0.01~0.04]	
	00 100	70.4100		(3) Não recom.	(3) Não recom.	(3) MAX. 0.2	(3) MAX. 0.2		
	★ ☆			(1) 0.005~0.025	(1) 0.01~0.03	(1) 0.01~0.04	(1) 0.01~0.04]	
Aço liga	80~180	70 ~ 160	-	(2) Não recom.	(2) Não recom.	(2) 0.01~0.03	(2) 0.01~0.03	1	
	00 100			(3) Não recom.	(3) Não recom.	(3) MAX. 0.2	(3) MAX. 0.2]	
	Α			(1) 0.005~0.02	(1) 0.01~0.025	(1) 0.01~0.03	(1) 0.01~0.03]	
Aço inoxidável	60 ~130	★ 50 ~ 120	-	(2) Não recom.	(2) Não recom.	(2) 0.01~0.025	(2) 0.01~0.025	ıção	
	00 % 150	30 120		(3) Não recom.	(3) Não recom.	(3) MAX. 0.2	(3) MAX. 0.2	igera	
			<u> </u>	(1) 0.005~0.03	(1) 0.01~0.04	(1) 0.01~0.05	(1) 0.01~0.05	Com refrigeração	
Ferro fundido	-	-	★ 60 ~ 100	(2) Não recom.	(2) Não recom.	(2) 0.01~0.04	(2) 0.01~0.04	, j	
			00 100	(3) Não recom.	(3) Não recom.	(3) MAX. 0.2	(3) MAX. 0.2		
				(1) 0.005~0.03	(1) 0.01~0.04	(1) 0.01~0.05	(1) 0.01~0.05]	
Alumínio	-	-	★ 150 ~ 400	(2) Não recom.	(2) Não recom.	(2) 0.01~0.04	(2) 0.01~0.04		
			150 - 400	(3) Não recom.	(3) Não recom.	(3) MAX. 0.2	(3) MAX. 0.2]	
				(1) 0.01~0.03	(1) 0.01~0.04	(1) 0.01~0.05	(1) 0.01~0.05		
Latão	-	-	± 150 ~300	(2) Não recom.	(2) Não recom.	(2) 0.01~0.04	(2) 0.01~0.04]	
				(3) Não recom.	(3) Não recom.	(3) MAX. 0.2	(3) MAX. 0.2		

★:1ª recomendação ☆:2ª recomendação

Insertos GBF-GL

	Classes de insertos reco	mendadas (Vc : m/min)		(1) f para cana	l (mm/rev)						
	MEGACOAT	MEGACOAT NANO		(2) f para torn	eamento (mm/rev)		Observações				
Material	15	35		(3) ap para torneamento (mm)							
	PR1215	PR1535	GBF32R075 - 005GL	GBF32R095 - 100-005GL	GBF32R150 - 200-010GL	GBF32R300 - 010GL	පි				
			(1) 0.02~0.07	(1) 0.03~0.08	(1) 0.03~0.08	(1) 0.04~0.1					
Aço carbono	★ 80 ~ 180	☆ 70 ~ 160	(2) Não recom.	(2) 0.03~0.06	(2) 0.03~0.06	(2) 0.04~0.08	1				
	80 ~ 180	70 ~ 100	(3) Não recom.	(3) MAX. 0.2	(3) MAX. 0.3	(3) MAX. 0.5	ا و				
			(1) 0.02~0.06	(1) 0.03~0.07	(1) 0.03~0.07	(1) 0.04~0.09	Com refrigeração				
Aço liga	80 ~ 180	☆ 70 ~ 160	(2) Não recom.	(2) 0.03~0.06	(2) 0.03~0.06	(2) 0.04~0.08	frige				
	00 ~ 100	70 ~ 100	(3) Não recom.	(3) MAX. 0.2	(3) MAX. 0.3	(3) MAX. 0.5	E E				
			(1) 0.02~0.06	(1) 0.03~0.07	(1) 0.03~0.07	(1) 0.04~0.09	3				
Aço inoxidável	☆ 60 ~ 130	50 ~ 120	(2) Não recom.	(2) 0.03~0.06	(2) 0.03~0.06	(2) 0.04~0.08]				
	00 ~ 130	JU ~ 120	(3) Não recom.	(3) MAX. 0.2	(3) MAX. 0.3	(3) MAX. 0.5	1				

a

RE

GMG / GMM / GMN / GMGA

		Classes de i	nsertos reco	mendadas	(Vc: m/min)			Ca	nal		Torneamento				T _s
Material	Cermet	Metal duro CVD	N	letal duro P\	/D	Metal duro		Largura da	aresta (mm)	Largura da aresta (mm)				/açõe	
iviateriai	06NI	CR9025	PR915	PR930	PR905	KW10	2.0~3.0	4.0	5.0	6.0 / 8.0	2.0~3.0	4.0	5.0	6.0 / 8.0	Observações
	≧	89	PR	g g g		K	f (mm/rev)					f (mn	n/rev)		
Aço carbono	☆ 100~220	☆ 80~200	\$0~200	★ 80~200	-	-	0.05~0.15	0.10~0.25	0.15~0.35	0.20~0.35	0.10~0.20	0.15~0.30	0.20~0.40	0.25~0.40	
Aço liga	☆ 80~200	☆ 70~180	☆ 70~180	★ 70~180	-	-	0.05~0.15	0.10~0.25	0.15~0.35	0.20~0.35	0.10~0.20	0.15~0.30	0.20~0.40	0.25~0.40	
Aço inoxidável	☆ 70~160	☆ 60~150	★ 60~150	☆ 60~150	-	-	0.05~0.15	0.10~0.20	0.15~0.35	0.20~0.35	0.10~0.20	0.15~0.25	0.20~0.40	0.25~0.40	igeração
Ferro fundido	-	-	-	-	★ 100~200	☆ 70~150	0.05~0.20	0.10~0.30	0.15~0.40	0.20~0.40	0.10~0.25	0.15~0.35	0.20~0.45	0.25~0.45	Com refrigeração
Ligas de alumínio	-	-	-	-	-	★ 200~500	0.05~0.20	0.08~0.25	0.10~0.25	0.12~0.30	0.10~0.20	0.10~0.25	0.10~0.25	0.15~0.30]
Latão	-	-	-	-	-	★ 100~200	0.05~0.15	0.08~0.20	0.10~0.25	0.12~0.30	0.10~0.20	0.10~0.25	0.10~0.25	0.15~0.30	

★:1ª recomendação ☆:2ª recomendação

CW

Consulte as observações abaixo para as condições de torneamento

1. Ao usar porta-ferramentas KGM

	Condições de corte recomendadas
ap (MAX.) (mm)	menor que 80% da largura da aresta
f (MAX.) (mm/rev)	menor que 10% da largura da aresta

 $ap \le 0.8CW$ $f \le 0.1CW$

(ap) x (f) não devem exceder 1/2 de ap (MAX.) x f (MAX.)

Carga(mm²) Larg. da aresta (mm)	2.0~2.5	3.0	4.0	5.0	6.0	8.0
apxf	~0.20	~0.36	~0.64	~1.00	~1.44	~2.56

ap x f $\leq \frac{1}{2}$ x 0.8CW x 0.1CW=0.04CW²

- 2. Ao usar o porta-ferramentas KGM-T (tipo de canal profundo) use 90% das condições KGM $\,$
- 3. Ao usar porta-ferramentas KGMM / KGMS / KFMS-8

	Condições de corte recomendadas	
ap (MAX.) (mm)	menor que 50% da largura da aresta	ap:
f (MAX.) (mm/rev)	menor que 4% da largura da aresta	f≤

 $ap \le 0.5CW$ $f \le 0.04CW$

(ap) x (f) deve ser conforme a seguir. (50% ou menor do KGM)

Carga (mm²) Larg. da aresta (mm)	2.0~2.5	3.0	4.0	5.0	6.0	8.0
ap x f	~0.10	~0.18	~0.32	~0.50	~0.72	~1.28

ap x f \leq 0.02CW²

4. Ao usar porta-ferramenta KIGM

•	
	Condições de corte recomendadas
ap (MAX.) (mm)	menor que 70% da largura da aresta
f (MAX.) (mm/rev)	menor que 8% da largura da aresta

 $ap \le 0.7CW$ $f \le 0.08CW$

(ap) x (f) deve ser conforme a seguir. (menor de 70% do KGM)

Carga(mm²) Larg. da aresta(mm)	3.0	4.0	5.0
apxf	~0.25	~0.44	~0.70

 $ap \times f \le 0.04 CW^2$

GMG / GMM / GMGA 8030 - Canal de face

GIVIG / GIVIIVI / GIVIG/	1 8030 -	Canai de la	ice										
		Classes de inse	rtos recomer	ndadas (Vc: n	n/min)		Canal de face			Torneamento			S
Material	Cermet	Metal duro CVD	Metal duro PVD			Metal duro	Largura da aresta (mm)		m)	Largura da aresta (mm)		m)	Observações
Material	06NI	972	PR915	PR930	PR905	KW10	8.0			8.0			bsen
	Ž	CR9025			KW	f (mm/rev)		f	(mm/rev)				
Aço carbono	☆ 100~220	☆ 80~160	☆ 80~160	★ 80~160	-	-	0.1~0.2			0.1~0.25			
Aço liga	\$0~160	☆ 70~160	☆ 70~160	★ 70~160	-	-	0.1~0.2			0.1~0.25			
Aço inoxidável	☆ 70~140	☆ 60~130	★ 60~130	☆ 60~130	-	-	0.1~0.2			0.1~0.25			refrigeração
Ferro fundido	-	-	-	-	★ 80~180	☆ 70~130	0.1~0.3			0.1~0.35			Com refr
Ligas de alumínio	-	-	-	-	-	★ 200~300	0.08~0.25			0.08~0.30			
Latão	-	-	-	-	-	★ 100~150	0.08~0.25			0.08~0.30			

EZG

W		e insertos n/min)	EZGR030030S	EZG [®] /. 040040 EZG [®] /. 050050 EZG [®] /. 040040S	EZG%.060060 EZG%.070070 EZG%.080070 EZG%.060060S	Ol		
Material	MEGACOAT	Metal duro		EZG [®] /.050050S	EZG%.070070S EZG%.080070S	Observações		
	PR1225	GW05	f (mm/rev)					
Aço carbono / Aço liga	★ 30~100	-	~0.02	~0.03	~0.05			
Aço inoxidável	★ 30~80	-	~0.01	~0.02	~0.03	Com refrigeração		
Metais não ferrosos	-	★ ~300	-	~0.05	~0.08			

★:1ª recomendação

G

VNG

	Classes de in	sertos recomendadas	(Vc: m/min)			
	MEGACOAT Metal duro PV		Metal duro	VNG04 VNG05	VNG06 VNG07	
Material	PR1225	PR930	KW10	CODIN	VNGU/	Observações
	TRIZES	11050	NW 10	f (mn		
Aço carbono / Aço liga	★ 30~100	☆ 30~100		~0.03	~0.05	
Aço inoxidável	★ 30~80	☆ 30~80		~0.02	~0.03	Com refrigeração
Metais não ferrosos	não ferrosos		★ ~300	~0.05	~0.08	

★:1ª recomendação ☆:2ª recomendação

SIGC

	Classes de insertos reco	mendadas (Vc: m/min)		(1) f para canal (mm/rev)					
March	MEGACOAT NANO PLUS	MEGACOAT NANO		(2) f para torneamento (mm/rev)	Observações			
Material				(3) ap para torneamento (mm)					
	PR1725	PR1535	GC08 ^R /L	GC10 ^R /L, GC12 ^R /L 100 ~ 200	GC10 ^R /L, GC12 ^R /L 250 ~ 300				
		-/-	(1) 0.01~0.03	(1) 0.02~0.04	(1) 0.02~0.04				
Aço carbono	★ 50~80	☆ 50~80	(2) 0.01~0.03	(2) 0.02~0.04	(2) 0.02~0.04				
	30 00	30 00	(3) Max. 0.05	(3) Max. 0.05	(3) Max. 0.1				
		٨	(1) 0.01~0.03	(1) 0.02~0.04	(1) 0.02~0.04				
Aço liga	★ 50~80	☆ 50~80	(2) 0.01~0.03	(2) 0.02~0.04	(2) 0.02~0.04	Com refrigeração			
	30 00	30 00	(3) Max. 0.05	(3) Max. 0.05	(3) Max. 0.1				
	٨		(1) 0.01~0.03	(1) 0.01~0.03	(1) 0.01~0.03				
Aço inoxidável	☆ 50~80	★ 50~80	(2) 0.01~0.03	(2) 0.01~0.03	(2) 0.01~0.03				
	30 00	33 00	(3) Max. 0.05	(3) Max. 0.05	(3) Max. 0.1				

Quebra-cavaco retificado: $GE^R/L\cdots A(R)$, $GE^R/L\cdots B(R)$

	(lasses de insertos reco	omendadas (Vc: m/mir	n)		(1) f para canal (mm/rev)			
	Cermet	MEGACOAT	Metal duro PVD	Metal duro		(2) f para torneamento (mm/rev)		a	
Material						(3) ap para torneamento (mm)		Observações	
	TN6020	PR1225	PR1025	KW10	GE ^R /L 100∼200-010A 100∼200-100AR	GE ^F /L 100~200-010B 100~200-100BR	GE ^R /L 250~300-020B		
	☆	*	☆		(1) 0.01~0.03	(1) 0.02~0.04	(1) 0.02~0.04		
Aço carbono				-	(2) 0.01~0.03	(2) 0.02~0.04	(2) 0.02~0.04		
	50~80	50~80	50~80		(3) Max. 0.05	(3) Max. 0.05	(3) Max. 0.1		
	☆	*	☆		(1) 0.01~0.03	(1) 0.02~0.04	(1) 0.02~0.04		
Aço liga	1			-	(2) 0.01~0.03	(2) 0.02~0.04	(2) 0.02~0.04		
	50~80	50~80	50~80		(3) Max. 0.05	(3) Max. 0.05	(3) Max. 0.1]	
	-	-	*	☆		(1) 0.01~0.03	(1) 0.01~0.03	(1) 0.01~0.03]
Aço inoxidável			- ' '	, ,		-	(2) 0.01~0.03	(2) 0.01~0.03	(2) 0.01~0.03
		50~80	50~80		(3) Max. 0.05	(3) Max. 0.05	(3) Max. 0.1	Com refrigeração	
				*	(1) 0.01~0.03	(1) 0.02~0.04	(1) 0.02~0.04	Com refrigeração	
Ferro fundido	-	-	-	, ,	(2) 0.01~0.03	(2) 0.02~0.04	(2) 0.02~0.04	1	
				50~80	(3) Max. 0.05	(3) Max. 0.05	(3) Max. 0.1	1 1	
				*	(1) 0.01~0.03	(1) 0.02~0.04	(1) 0.02~0.04	1 1	
Alumínio	-	-	-		(2) 0.01~0.03	(2) 0.02~0.04	(2) 0.02~0.04	1 1	
				50~100	(3) Max. 0.1	(3) Max. 0.1	(3) Max. 0.2	1	
				4	(1) 0.01~0.03	(1) 0.02~0.04	(1) 0.02~0.04		
Latão	-		-	*	(2) 0.01~0.03	(2) 0.02~0.04	(2) 0.02~0.04	1 1	
			50~100	(3) Max. 0.1	(3) Max. 0.1	(3) Max. 0.2			

^{*} Use classe com revestimento PVD ou metal duro para torneamento com largura de aresta de 1 mm. (GE% 100-005A / 100-005B) ★:1ª recomendação ☆:2ª recomendação

Quebra-cavaco retificado: $GE^R /_L \cdots C(R)$, $GE^R /_L \cdots D(R)$, $GE^R /_L \cdots E$

	Classes	de insertos reco	omendadas (Vc:	m/min)			((1) f para canal (mm/rev)									
	Cermet	MEGACOAT	Metal duro	Metal duro			((2) f para torneamento (n	nm/rev)								
	Cermet	MEGACUAI	PVD	Metal duro			((3) ap para torneamento	(mm)								
Material					GE ^R /L 100~200-010C 200-100CR	GE ^R /L 250~350-020C 250~300-150CR											
	TN6020	PR1225	PR1225	PR1025	GW15	GE ^R /L 100~145-010D	GE ^R /L 150~195-010D	GE ^R / _L 200~280-020D 200-100DR		GE ^R / _L 300~400-020D 300-150DR							
					GE ^R /L 100-010E	GE ^F /∟ 150~195-010E	GE ^R /L 200~225-010E 230-020E	GE ^F /∟ 250~330-020E		GE ^F /L 350~430-020E	GE ^R /L 450~500-020E						
Aço carbono	☆	*	☆		(1) 0.03~0.08	(1) 0.03~0.08	(1) 0.04~0.09	(1) 0.04~0.09	(1) 0.05~0.12	(1) 0.05~0.12	(1) 0.05~0.12	Г					
	1 '			-	(2) 0.03~0.08	(2) 0.03~0.08	(2) 0.04~0.09	(2) 0.04~0.09	(2) 0.05~0.1	(2) 0.05~0.1	(2) 0.05~0.1	1					
	120~180	60~140	60~140		(3) Max. 0.3	(3) Max. 0.3	(3) Max. 0.3	(3) Max. 0.3	(3) Max. 0.5	(3) Max. 0.5	(3) Max. 0.5						
	₩	★ 60~120		*	☆		(1) 0.03~0.07	(1) 0.03~0.07	(1) 0.04~0.08	(1) 0.04~0.08	(1) 0.05~0.1	(1) 0.05~0.1	(1) 0.05~0.1				
Aço liga					-	(2) 0.03~0.1	(2) 0.03~0.1	(2) 0.04~0.08	(2) 0.04~0.08	(2) 0.05~0.1	(2) 0.05~0.1	(2) 0.05~0.1					
	100~160		60~120		(3) Max. 0.3	(3) Max. 0.3	(3) Max. 0.3	(3) Max. 0.3	(3) Max. 0.5	(3) Max. 0.5	(3) Max. 0.5						
	☆	*	☆		(1) 0.03~0.07	(1) 0.03~0.07	(1) 0.04~0.08	(1) 0.04~0.08	(1) 0.05~0.1	(1) 0.05~0.1	(1) 0.05~0.1						
Aço inoxidável				-	(2) 0.03~0.1	(2) 0.03~0.1	(2) 0.04~0.08	(2) 0.04~0.08	(2) 0.05~0.1	(2) 0.05~0.1	(2) 0.05~0.1						
	70~130	60~110	60~110		(3) Max. 0.3	(3) Max. 0.3	(3) Max. 0.3	(3) Max. 0.3	(3) Max. 0.5	(3) Max. 0.5	(3) Max. 0.5						
							*	(1) 0.03~0.08	(1) 0.03~0.08	(1) 0.04~0.09	(1) 0.04~0.09	(1) 0.05~0.12	(1) 0.05~0.12	(1) 0.05~0.12			
Ferro fundido	-	-	-		(2) 0.03~0.08	(2) 0.03~0.08	(2) 0.04~0.09	(2) 0.04~0.09	(2) 0.05~0.1	(2) 0.05~0.1	(2) 0.05~0.1						
									60~100	(3) Max. 0.3	(3) Max. 0.3	(3) Max. 0.3	(3) Max. 0.3	(3) Max. 0.5	(3) Max. 0.5	(3) Max. 0.5	
				*	(1) 0.05~0.12	(1) 0.05~0.12	(1) 0.05~0.15	(1) 0.05~0.15	(1) 0.08~0.15	(1) 0.08~0.15	(1) 0.08~0.15						
Alumínio	-	-	-		(2) 0.05~0.12	(2) 0.05~0.12	(2) 0.05~0.15	(2) 0.05~0.15	(2) 0.08~0.15	(2) 0.08~0.15	(2) 0.08~0.15						
				150~300	(3) Max. 0.5	(3) Max. 0.5	(3) Max. 0.5	(3) Max. 0.5	(3) Max. 0.8	(3) Max. 0.8	(3) Max. 0.8						
				*	(1) 0.05~0.12	(1) 0.05~0.12	(1) 0.05~0.15	(1) 0.05~0.15	(1) 0.08~0.15	(1) 0.08~0.15	(1) 0.08~0.15						
Latão	-	-	-	-	100~250	(2) 0.05~0.12	(2) 0.05~0.12	(2) 0.05~0.15	(2) 0.05~0.15	(2) 0.08~0.15	(2) 0.08~0.15	(2) 0.08~0.15]				
				100~230	(3) Max. 0.5	(3) Max. 0.5	(3) Max. 0.5	(3) Max. 0.5	(3) Max. 0.8	(3) Max. 0.8	(3) Max. 0.8						

^{*}Use classe com revestimento PVD ou metal duro para torneamento com largura de aresta de 1 mm. (GE% 100-010C / 100-010D / 100-010E) *:1ª recomendação ::2ª recomendação

Quebra-cavaco moldado: GER---CM, GER---DM, GER---EM

	Classes	de insertos reco	omendadas (Vc:	m/min)			(1) f para can	al (mm/rev)									
	Cermet	MEGACOAT	Metal duro PVD	Metal duro			(2) f para torr	neamento (mm/rev)									
							(3) ap para to	rneamento (mm)									
Material					GER 150~200-010CM	GER 250~350-020CM					Observações						
	TN6020	PR1225	PR1025	GW15	GER 150~200-010DM		GER 230~250-020DM	GER 300~400-020DM									
					GER 150~200-010EM			GER 250~300-020EM	GER 350~400-020EM	GER 450~500-020EM							
		4	☆		(1) 0.03~0.1	(1) 0.03~0.12	(1) 0.04~0.12	(1) 0.05~0.12	(1) 0.05~0.12	(1) 0.05~0.12							
Aço carbono	-		1 ' '	-	(2) 0.03~0.1	(2) 0.03~0.1	(2) 0.04~0.1	(2) 0.05~0.1	(2) 0.05~0.1	(2) 0.05~0.1							
		60~160	60~160		(3) Max.1.0	(3) Max.1.5											
		*	☆		(1) 0.03~0.1	(1) 0.03~0.1	(1) 0.04~0.12	(1) 0.05~0.12	(1) 0.05~0.12	(1) 0.05~0.12							
Aço liga	-	'`		-	(2) 0.03~0.1	(2) 0.03~0.1	(2) 0.04~0.1	(2) 0.05~0.1	(2) 0.05~0.1	(2) 0.05~0.1	Com refrigeração						
		60~140	60~140		(3) Max.1.0	(3) Max.1.5											
		*	☆		(1) 0.03~0.08	(1) 0.03~0.08	(1) 0.04~0.08	(1) 0.05~0.1	(1) 0.05~0.1	(1) 0.05~0.1							
Aço inoxidável	-	'`	1 ' '	-	(2) 0.03~0.1	(2) 0.03~0.1	(2) 0.04~0.1	(2) 0.05~0.1	(2) 0.05~0.1	(2) 0.05~0.1							
		60~110	60~110	60~110	60~110	60~110	60~110	60~110	60~110		(3) Max.1.0	(3) Max.1.5					

Insertos GV - Quebra-cavaco retificado

	C	lasses de in	sertos reco	mendadas	(Vc: m/mi	n)	f (mm/rev) = (1) Canal, (2) Torneamento ap (mm) = (3) Torneamento							
Material		Cermet		MEGA COAT	Metal duro PVD	Metal duro	GV ^P /∟ 100~300SS 100~300S	GV ^R /∟ 145~185B	GV ^R /∟ 200~280B	GV ^R /∟ 300~400B				Observações
	06NL	TC40	1C60	PR1225	PR930	KW10	GV ^P / _L 100~340A 200~300AR		GV ^R /∟ 200-100BR	GV ^R /∟ 300-150BR	GV ^R /∟ 280~300C	GV ^R /L 340~400C	GV ^R /∟ 430~500C	응
Aço carbono	☆ 120~180	☆ 120~180	☆ 80~120	★ 80~160	☆ 80~140	-	(1) 0.03~0.08 (2) 0.03~0.08 (3) Max. 0.3	(1) 0.03~0.08 (2) 0.03~0.08 (3) Max. 0.3	(1) 0.04~0.09 (2) 0.04~0.09 (3) Max. 0.3	(1) 0.05~0.12 (2) 0.05~0.1 (3) Max. 0.5	(1) 0.04~0.09 (2) 0.04~0.09 (3) Max. 0.3	(1) 0.05~0.12 (2) 0.05~0.1 (3) Max. 0.5	(1) 0.05~0.12 (2) 0.05~0.1 (3) Max. 0.5	
Aço liga	☆ 100~160	☆ 100~160	☆ 80~100	★ 80~140	☆ 80~120	-	(1) 0.03~0.07 (2) 0.03~0.1 (3) Max. 0.3	(1) 0.03~0.07 (2) 0.03~0.1 (3) Max. 0.3	(1) 0.04~0.08 (2) 0.04~0.08 (3) Max. 0.3	(1) 0.05~0.1 (2) 0.05~0.1 (3) Max. 0.5	(1) 0.04~0.08 (2) 0.04~0.08 (3) Max. 0.3	(1) 0.05~0.1 (2) 0.05~0.1 (3) Max. 0.5	(1) 0.05~0.1 (2) 0.05~0.1 (3) Max. 0.5	
Aço inoxidável	☆ 70~130	-	☆ 60~100	★ 60~130	☆ 60~110	-	(1) 0.03~0.07 (2) 0.03~0.1 (3) Max. 0.3	(1) 0.03~0.07 (2) 0.03~0.1 (3) Max. 0.3	(1) 0.04~0.08 (2) 0.04~0.08 (3) Max. 0.3	(1) 0.05~0.1 (2) 0.05~0.1 (3) Max. 0.5	(1) 0.04~0.08 (2) 0.04~0.08 (3) Max. 0.3	(1) 0.05~0.1 (2) 0.05~0.1 (3) Max. 0.5	(1) 0.05~0.1 (2) 0.05~0.1 (3) Max. 0.5	Com refrigeração
Ferro fundido	-	-	-	-	-	★ 60~100	(1) 0.03~0.08 (2) 0.03~0.08 (3) Max. 0.3	(1) 0.03~0.08 (2) 0.03~0.08 (3) Max. 0.3	(1) 0.04~0.09 (2) 0.04~0.09 (3) Max. 0.3	(1) 0.05~0.12 (2) 0.05~0.1 (3) Max. 0.5	(1) 0.04~0.09 (2) 0.04~0.09 (3) Max. 0.3	(1) 0.05~0.12 (2) 0.05~0.1 (3) Max. 0.5	(1) 0.05~0.12 (2) 0.05~0.1 (3) Max. 0.5	Com refr
Ligas de alumínio	-	-	-	-	-	★ 150~300	(1) 0.05~0.12 (2) 0.05~0.12 (3) Max. 0.5	(1) 0.05~0.12 (2) 0.05~0.12 (3) Max. 0.5	(1) 0.05~0.15 (2) 0.05~0.15 (3) Max. 0.5	(1) 0.08~0.15 (2) 0.08~0.15 (3) Max. 0.8	(1) 0.05~0.15 (2) 0.05~0.15 (3) Max. 0.5	(1) 0.08~0.15 (2) 0.08~0.15 (3) Max. 0.8	(1) 0.08~0.15 (2) 0.08~0.15 (3) Max. 0.8	
Latão	-	-	-	-	-	★ 100~250	(1) 0.05~0.12 (2) 0.05~0.12 (3) Max. 0.5	(1) 0.05~0.12 (2) 0.05~0.12 (3) Max. 0.5	(1) 0.05~0.15 (2) 0.05~0.15 (3) Max. 0.5	(1) 0.08~0.15 (2) 0.08~0.15 (3) Max. 0.8	(1) 0.05~0.15 (2) 0.05~0.15 (3) Max. 0.5	(1) 0.08~0.15 (2) 0.08~0.15 (3) Max. 0.8	(1) 0.08~0.15 (2) 0.08~0.15 (3) Max. 0.8	

^{*} Use MEGACOAT, metal duro PVD ou metal duro para torneamento com largura de aresta de 1 mm (GV% 100SS / 100S / 100A)

Insertos GVF - Ouebra-cavaco retificado

ilisertos dvi - Que	Dia-Ca	vaco i	tilica	JU								
		Classes de i	insertos reco	omendadas ((Vc: m/min)		f (mm/rev) = (1) Canal, (2) Torneamento ap (mm) = (3) Torneamento					
Material		Cermet		MEGACOAT Metal duro PVD Metal dur		Metal duro	GVF ^R /∟ 200~340A	GVF ^F /∟ 250~350B	GVF ^R /∟ 400~490B	GVF ^F /∟ 350~450C	GVF ^R /∟ 500~600C	Observações
	06NT	TC40	1060	PR1225	PR930	KW10	~300-150AK				qo	
Aço carbono	☆ 150~220	☆ 150~220	☆ 100~150	★ 80~200	\$\frac{\frac{1}{1}}{2}}	-	(1) 0.03~0.08 (2) 0.03~0.08 (3) Max. 0.3	(1) 0.04~0.09 (2) 0.04~0.09 (3) Max. 0.3	(1) 0.05~0.1 (2) 0.05~0.1 (3) Max. 0.5	(1) 0.05~0.12 (2) 0.05~0.1 (3) Max. 0.5	(1) 0.05~0.12 (2) 0.05~0.1 (3) Max. 0.8	
Aço liga	☆ 130~200	☆ 130~200	☆ 80~130	★ 80~180	☆ 80~160	-	(1) 0.03~0.07 (2) 0.03~0.1 (3) Max. 0.3	(1) 0.04~0.08 (2) 0.04~0.08 (3) Max. 0.3	(1) 0.05~0.09 (2) 0.05~0.09 (3) Max. 0.5	(1) 0.05~0.1 (2) 0.05~0.1 (3) Max. 0.5	(1) 0.05~0.1 (2) 0.05~0.1 (3) Max. 0.8	
Aço inoxidável	☆ 70~150	-	☆ 60~100	★ 80~150	☆ 60~130	-	(1) 0.03~0.07 (2) 0.03~0.1 (3) Max. 0.3	(1) 0.04~0.08 (2) 0.04~0.08 (3) Max. 0.3	(1) 0.05~0.09 (2) 0.05~0.09 (3) Max. 0.5	(1) 0.05~0.1 (2) 0.05~0.1 (3) Max. 0.5	(1) 0.05~0.1 (2) 0.05~0.1 (3) Max. 0.8	Com refrigeração
Ferro fundido	-	-	-	-	-	★ 60~100	(1) 0.03~0.08 (2) 0.03~0.08 (3) Max. 0.3	(1) 0.04~0.09 (2) 0.04~0.09 (3) Max. 0.3	(1) 0.05~0.1 (2) 0.05~0.1 (3) Max. 0.5	(1) 0.05~0.12 (2) 0.05~0.1 (3) Max. 0.5	(1) 0.05~0.12 (2) 0.05~0.1 (3) Max. 0.8	Com refri
Ligas de alumínio	-	-	-	-	-	★ 150~400	(1) 0.05~0.12 (2) 0.05~0.12 (3) Max. 0.5	(1) 0.05~0.15 (2) 0.05~0.15 (3) Max. 0.5	(1) 0.05~0.15 (2) 0.05~0.15 (3) Max. 0.8	(1) 0.08~0.15 (2) 0.08~0.15 (3) Max. 0.8	(1) 0.08~0.15 (2) 0.08~0.15 (3) Max. 0.8	
Latão	-	-	-	-	-	★ 150~300	(1) 0.05~0.12 (2) 0.05~0.12 (3) Max. 0.5	(1) 0.05~0.15 (2) 0.05~0.15 (3) Max. 0.5	(1) 0.05~0.15 (2) 0.05~0.15 (3) Max. 0.8	(1) 0.08~0.15 (2) 0.08~0.15 (3) Max. 0.8	(1) 0.08~0.15 (2) 0.08~0.15 (3) Max. 0.8	

Aplique uma quantidade suficiente de refrigerante

O ap deve ser inferior a 0,5 mm se um bom acabamento superficial for necessário

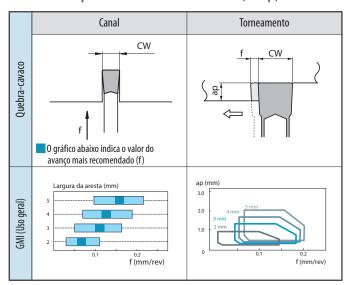
★:1ª recomendação ☆:2ª recomendação

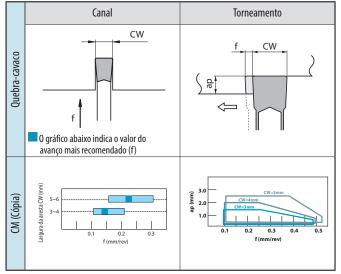
FTK							
		Classes de insertos reco	mendadas (Vc: m/min)		Largura da a	ões	
Material	Cermet	Metal duro CVD	Metal duro PVD	Metal duro	4.0	5.0	Observações
	TN90	CR9025	PR930	KW10	f (mm/rev)		Obs
Aço carbono	☆ 120~200	★ 80~180	☆ 60~130	-	0.05~0.15	0.05~0.15	
Aço liga	☆ 100~160	★ 70~150	☆ 60~130	-	0.05~0.15	0.05~0.15	
Aço inoxidável	☆ 80~150	☆ 60~140	☆ 50~120	-	0.05~0.15	0.05~0.15	Com refrigeração
Ferro fundido	-	-	-	★ 50~100	0.10~0.30	0.10~0.30	om refr
Ligas de alumínio	-	-	-	★ 200~450	0.05~0.25	0.05~0.25	
Latão	-	-	-	★ 100~200	0.05~0.25	0.05~0.25	

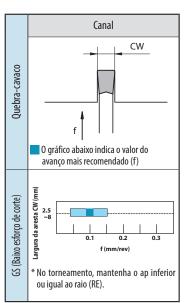
★:1ª recomendação ☆:2ª recomendação

Insertos GMN (CBN / PCD)

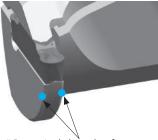
	Classes de insertos reco	f (mm/rev) = (1) Canal, (2) Torneamento				ções	
Material	CBN	PCD	ap (mm) = (3) Torneamento				rvag
	KBN510, KBN525	KPD001 (KPD010)	GMN2	GMN3	GMN4, GMN5	GMN6	Ob se
Ligas de alumínio	-	★ 150~2,000	(1) 0.05~0.15 (2) 0.05~0.15 (3) Max. 0.5	(1) 0.05~0.15 (2) 0.05~0.15 (3) Max. 0.8	(1) 0.08~0.18 (2) 0.08~0.18 (3) Max. 0.8	(1) 0.10~0.20 (2) 0.10~0.20 (3) Max. 0.8	
Latão	-	★ 200~800	(1) 0.05~0.15 (2) 0.05~0.15 (3) Max. 0.5	(1) 0.05~0.15 (2) 0.05~0.15 (3) Max. 0.8	(1) 0.08~0.18 (2) 0.08~0.18 (3) Max. 0.8	(1) 0.10~0.20 (2) 0.10~0.20 (3) Max. 0.8	refrigeração
Ferro fundido	★ 150~400	-	(1) 0.04~0.09 (2) 0.04~0.09 (3) Max. 0.3	(1) 0.05~0.1 (2) 0.05~0.1 (3) Max. 0.5	(1) 0.05~0.12 (2) 0.05~0.12 (3) Max. 0.5	(1) 0.05~0.15 (2) 0.05~0.15 (3) Max. 0.8	Com refr
Materiais duros	★ 80~120	-	(1) 0.02~0.05 (2) 0.01~0.03 (3) Max. 0.1	(1) 0.03~0.07 (2) 0.01~0.05 (3) Max. 0.2	(1) 0.03~0.08 (2) 0.03~0.08 (3) Max. 0.3	(1) 0.05~0.1 (2) 0.05~0.1 (3) Max. 0.4	


^{★:1}ª recomendação ☆:2ª recomendação


KGDI - Condições de corte recomendadas (Vc)


	Quebra- cavaco	Classes de insertos recomendadas (Vc: m/min)						s
Material		Cermet		MEGACOAT NANO	MEGACOAT		Metal duro	Observações
		TN620	TN90	PR1535	PR1225	PR1215	GW15	0
Aço carbono	GMI CM GS	☆ 100~220	☆ 100~220	☆ 80~150	★ 80~200	☆ 100~200	-	
Aço liga		☆ 80~200	☆ 80~200	☆ 70~150	★ 70~180	☆ 80~180	-	
Aço inoxidável		☆ 70~180	☆ 70~180	★ 60~150	☆ 60~150	☆ 60~150	-	Com refrigeração
Ferro fundido		-	-	-	-	★ 100~200	-	Com refri
Ligas de alumínio		-	-	-	-	-	★ 200~500	
Latão		-	-	-	-	-	★ 100~200	

★: 1ª recomendação ☆: 2ª recomendação


KGDI - Condições de corte recomendadas (f e ap)

Processamento adicional da ponta do porta-ferramentas quando o quebra-cavacos CM é instalado

* Por meio de leve chanframento da ponta do suporte em cerca de 0,5 mm, o diâm. mín. de corte pode ser reduzido.

Guia para canal externo

Ponto (I) (Torneamento após canal)

1) Profundidade de canal 0,5mm ou maior: Para desbaste (Consulte a Fig. 1)

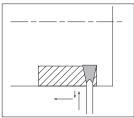
Antes do torneamento, recue a ferramenta para trás cerca de 0,1 mm após o canal em vez de tornear logo depois do canal.

(Deixar de recuar a ferramenta para trás antes da usinagem transversal resultará em uma carga desequilibrada aplicada em apenas um lado da aresta de corte.)

2) Profundidade de canal 0,5mm ou menor: Para acabamento (Consulte a Fig. 2)

O torneamento subsequente ao canal é possível porque as profundidades de canal raso provocam uma pequena carga na aresta de corte. (Não é necessário um recuo.)

Ponto (II)


- 1) Ao alargar a largura do canal (consulte a Fig. 3), aplique o "Torneamento Gradual".
- 2) O canal e as paredes laterais alargados devem ser acabados por último.

(Para melhor controle do cavaco, recomenda-se um ap de 0,5 mm ou mais.)

Observação) Se a peça não estiver apoiada no centro, reduza a taxa de avanço ao fazer o canal em direção ao centro.

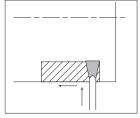


Fig. 3

Antes do torneamento, puxe a ferramenta para trás cerca de 0,1 mm após o canal. (Profundidade de canal de 0,5 mm ou mais no desbaste)

Fig. 1

Torneamento subsequente ao canal (Profundidade de canal de 0,5 mm ou menos no acabamento) Fig. 2

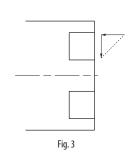
Guia para canal de face

<Seleção do porta-ferramentas>

(1) Escolha a melhor ferramenta dependendo da largura do canal.

O diâm. externo do canal listado no catálogo indica a faixa disponível (entre DAXN e DAXX) para o canal inicial na peça de trabalho não processada (Consulte a Fig. 1)

(2) Confirme a profundidade de canal (CD)



(3) Recomenda-se instalar o porta-ferramentas na posição reversa. (Fig. 2) (Isso proporcionará um fluxo de cavacos suave e a eliminação de cavacos)

<Guia para torneamento>

A direção do torneamento deve ser do diâmetro externo ao interno, conforme a Fig. 3

Isso melhora o escoamento do cavaco.

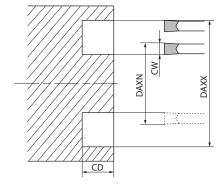
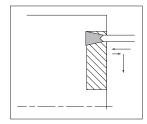


Fig. 1

Porta-ferramenta	Direito	Porta-ferramenta	Esquerdo	
Inserto	(Neutro)	Inserto	(Neutro)	
	↓		!	

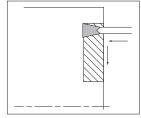

Fig. 2 Lado e rotação do porta-ferramentas

Guia para canal de face (Continuação)

Ponto (I) (Torneamento após canal)

1) Profundidade de canal 0,5mm ou maior : Para desbaste (Consulte a Fig. 4)

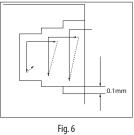
Antes do torneamento, recue a ferramenta cerca de 0,1 mm após o canal em vez de tornear logo depois do canal. (A falha em recuar a ferramenta para trás antes da usinagem transversal resultará em uma carga desequilibrada aplicada em apenas um lado da aresta de corte.)



Antes do torneamento, recue a ferramenta para trás cerca de 0,1 mm após o canal. (Profundidade de Canal de 0,5 mm ou maior no desbaste) Fig. 4

2) Profundidade de canal 0,5mm ou menos: Para acabamento (Consulte a Fig. 5)

O torneamento subsequente ao canal é possível porque as profundidades de canal raso provocam uma pequena carga na aresta de corte.


(Não é necessário um recuo.)

Torneamento subsequente ao canal (Profundidade de Canal de 0,5 mm ou menor no acabamento) Fig. 5

Ponto (II)

- 1) Ao alargar a largura do canal (Consulte a Fig. 6) Aplique o "torneamento gradual".
- 2) O canal e as paredes laterais alargados devem ser acabados por último. (Para melhor controle do cavaco, recomenda-se um ap de 0,5 mm ou maior.)

Resolução de problemas

Problema	Medidas corretivas				
O traço esbranquiçado permanece na parte inferior do canal.	(1) Aumente a velocidade de corte somente para o processo de acabamento. (Isso pode solucionar com a maioria dos casos.) Se o método não for bem-sucedido, tente o seguinte(2). (2) Verifique a paralelismo da aresta do inserto. (Ajuste: Aplique a aresta do inserto na face da peça e ajuste o porta-ferramenta dentro do ângulo de ± 5'. (Fig. 7) Fig. 7				
Os cavacos estão emaranhados.	 (1) Instale o porta-ferramenta na posição reversa. Ajuste o fluxo do refrigerante para a aresta de corte. (2) Ao alargar a ranhura, não faça um canal profundo. Em vez disso, repita o canal e o torneamento raso. 				
Trincas do inserto no torneamento.	Inverta a direção do faceamento.				
O canal não está reto.	Verifique o paralelismo da aresta. Diminua a taxa de avanço.				